首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Arakawa  R Bhat  S N Timasheff 《Biochemistry》1990,29(7):1914-1923
The correlation between protein solubility and the preferential interactions of proteins with solvent components was critically examined with aqueous MgCl2 as the solvent system. Preferential interaction and solubility measurements with three proteins, beta-lactoglobulin, bovine serum albumin, and lysozyme, resulted in similar patterns of interaction. At acid pH (pH 2-3) and lower salt concentrations (less than 2 M), the proteins were preferentially hydrated, while at higher salt concentrations, the interaction was either that of preferential salt binding or low salt exclusion. At pH 4.5-5, all three proteins exhibited either very low preferential hydration or preferential binding of MgCl2. These results were analyzed in terms of the balance between salt binding and salt exclusion attributed to the increase in the surface tension of water by salts, which is invariant with conditions. It was shown that the increase in salt binding at high salt concentration is a reflection of mass action, while its decrease at acid pH is due to the electrostatic repulsion between Mg2+ ions and the high net positive charge on the protein. The preferential interaction pattern was paralleled by the variation of protein solubility with solvent conditions. Calculation of the transfer free energies from water to the salt solutions for proteins in solution and in the precipitate showed dependencies on salt concentration. This indicates that the nature of interactions between proteins and solvent components is the same in solution and in the solid state, which implies no change in protein structure during precipitation. Analysis of the transfer free energies and preferential interaction parameter in terms of the salting-in, salting-out, and weak ion binding contributions has led to the conclusions that, when the weak ion binding contribution is small, the predominant protein-salt interaction must be that of preferential salt exclusion most probably caused by the increase of the surface tension of water by addition of the salt. A necessary consequence of this is salting-out of the protein, if the protein structure is to remain unaltered.  相似文献   

2.
The role of the Mg2+ cation on antihypertensive molecule binding on human serum albumin (HSA) was studied by affinity chromatography. The thermodynamic data corresponding to this binding were determined for a wide range of Mg2+ concentrations (c). For the nifedipine molecule, an increase in the Mg2+ concentration produced a decrease in binding due to a decrease in the electrostatic interactions. For verapamil and diltiazem, which have the highest solvent accessible surface area, the solute binding on HSA was divided into two Mg2+ concentration regions. For a low c value below c(c) (approximately 1.6 mmol/l), the binding dependence with c was similar to that of nifedipine. For c above c(c) the hydrophobic effect created in the bulk solvent associated with a decrease in the van der Waals interactions between the solute molecule and the HSA implied a decrease in its binding. These results showed that for patients with hypertension, an Mg2+ supplementation during treatment with these antihypertensive molecules can increase the active pharmacological molecule concentration.  相似文献   

3.
E Casali  P H Petra  J B Ross 《Biochemistry》1990,29(40):9334-9343
The relationship between steroid binding and protein subunit interactions of rabbit sex steroid binding protein (rSBP) has been studied by steady-state and time-resolved fluorescence spectroscopy. The high-affinity (Ka approximately 10(8) M-1 at 4 degrees C), fluorescent estrogen d-1,3,5(10),6,8-estrapentaene-3,17 beta-diol [dihydroequilenin (DHE)] was used as a fluorescent probe of the steroid-binding site. Perturbation of the binding site with guanidinium chloride (Gdm.Cl) was monitored by changes in the steady-state fluorescence anisotropy of DHE as well as by changes in fluorescence quenching of DHE with acrylamide. The results of acrylamide quenching at 11 degrees C show that, while between 0 and 1 M Gdm.Cl the steroid-binding site is completely shielded from bulk solvent, there is decreased DHE binding. To study the subunit-subunit interactions, rSBP was covalently labeled with dansyl chloride in the presence of saturating 5 alpha-dihydrotestosterone (DHT), which yielded a dansyl-conjugated protein that retained full steroid-binding activity. The protein subunit perturbation was monitored by changes in the steady-state fluorescence anisotropy of the dansyl group. At 11 degrees C, the dansyl anisotropy perturbation, reflecting changes in global and segmental motions of the dimer protein, occurs at concentrations of Gdm.Cl above 1 M. The Gdm.Cl titration in the presence of steroids with equilibrium association constants less than 10(8) M-1 shows a plateau near 3 M Gdm.Cl at 11 degrees C; at this Gdm.Cl concentration, no DHE is bound. No plateau is observed at 21 degrees C. At higher Gdm.Cl concentrations, the dansyl fluorescence anisotropy decreases further and shows no steroid dependence. Recovery of steroid-binding activity (assayed by saturation binding with [3H]DHT), under renaturation conditions, is dependent on both steroid concentration and affinity. Both unlabeled and dansyl-labeled protein recovery the same amount of activity, and according to fluorescence anisotropy, dansyl-labeled rSBP re-forms a dimer upon dilution below 1 M or removal of Gdm.Cl. From the steroid requirement for recovery of steroid-binding activity, it appears that a conformational template is required for the dimeric protein to re-form a steroid-binding site with native-like properties.  相似文献   

4.
In this paper, the anti-coagulant rodenticide-human serum albumin (HSA) binding was investigated using a perturbation method to calculate the solute distribution isotherms. It was shown that rodenticide can bound either on the benzodiazepine HSA site with low affinity (site I) or on the warfarin HSA site with high affinity (site II). The thermodynamic parameters of this association were calculated for the two HSA binding sites. For the site II, the rodenticide-HSA association was governed enthalpically whereas for the site I, this one was driven entropically. Moreover, the role of the magnesium (Mg(2+)) and calcium (Ca(2+)) on this association was carried out. It was clearly demonstrated that the rodenticide affinity for the site I was not affected by modifying the bulk solvent surface tension whereas for the site II the association constant increased strongly with the Mg(2+) or the Ca(2+) concentration in the bulk solvent. These results showed that the rodenticide-HSA affinity and thus the rodenticide toxicological effect depends on the Mg(2+) or Ca(2+) concentration.  相似文献   

5.
Analytical ultracentrifugation in a Gibbsian perspective   总被引:1,自引:0,他引:1  
The analytical ultracentrifuge has come into new intensive use following complete instrumental redesign and the use of advanced computer technologies for the analysis and interpretation of experimental results. Major attention is now devoted to the evaluation of interactions between similar and dissimilar biological macromolecules in dilute and concentrated systems. Electrostatically charged biological solute systems additionally comprise low molecular weight charged and non-charged cosolvents. Solvent/cosolvent interactions, insufficiently considered in most current analytical ultracentrifugation analyses, may quantitatively affect solute/solute interactions. For comprehensive analysis the Svedberg derivation considering a buoyant molar mass (1 - rho0 partial specific volume)M2 and valid at vanishing solute concentration for strictly two component systems only, should be replaced, following classical thermodynamic analysis, by the ratio (delta rho/delta c2)(mu)/d pi/dc2 of the density increment at constant chemical potential of diffusible cosolvents, to the derivative of the osmotic pressure with solute concentration. Disregard of the solvent/cosolvent and solute/cosolvent interactions should be avoided.  相似文献   

6.
The distance between the phospholipid surface and the active site of membrane-bound meizothrombin, a derivative of prothrombin, was determined directly using fluorescence energy transfer. The active site of prothrombin was exposed after a single cleavage by Echis carinatus protease in the presence of [5-(dimethylamino)-1-naphthalenesulfonyl]glutamylglycylarginyl+ ++ (DEGR) chloromethyl ketone to yield DEGR-meizothrombin and thereby minimize secondary proteolysis. When DEGR-meizothrombin was titrated with 80% phosphatidylcholine, 20% phosphatidylserine vesicles containing octadecylrhodamine, singlet-singlet energy transfer was observed between the donor dyes in the active sites of the membrane-bound proteins and the acceptor dyes at the outer surface of the phospholipid bilayer. This energy transfer required both Ca2+ and phosphatidylserine. Assuming k2 = 2/3, the dependence of the efficiency of energy transfer upon the acceptor density showed that the distance of closest approach between the active site probe and the bilayer surface was 71 +/- 2 A. In the presence of factor Va, the distance was 67 +/- 3 A. These direct measurements show that the active site of meizothrombin is located far above the membrane surface. Also, association of factor Va with meizothrombin on the phospholipid surface appears to cause a slight movement of the meizothrombin protease domain toward the membrane surface. The environment of the dansyl dye covalently attached to the active site of meizothrombin was particularly sensitive to the presence of calcium: addition of Ca2+ ions to metal-free DEGR-meizothrombin reduced the dansyl fluorescence lifetime from 11.7 to 9.0 ns and the dansyl emission intensity by 24%. Hence, the conformation of the active site changed when Ca2+ ions bound to meizothrombin. Since the intensity change was half-maximal at 0.2 mM and was also elicited by the binding of Mg2+ ions, this spectral change correlates with the calcium-dependent conformational change previously observed in fragment 1. We conclude, therefore, that the binding of Ca2+ ions to meizothrombin and, by extension, perhaps to prothrombin, elicits a conformational change that extends beyond the fragment 1 domains into the distant (cf. above) active site or protease domain. The association of factor Va with membrane-bound DEGR-meizothrombin increased both the dansyl emission intensity (by 7%) and polarization. This intensity change and the factor-Va dependent change in energy transfer indicate that the cofactor of the prothrombinase complex functions to modulate the conformation and orientation of both the substrate and the enzyme of the complex.  相似文献   

7.
We quantify Coulombic end effects (CEE) on oligocation-nucleic acid interactions at salt concentrations ([salt]) in the physiological range. Binding constants (K(obs); per site, at zero binding density) for the +8-charged C-amidated oligopeptide KWK6 and short single-stranded DNA oligonucleotides [dTpdT(|Z(D)|), where 6 < or = |Z(D)| < or = 22 is the number of DNA phosphates] were determined as a function of [salt] by fluorescence quenching. For the different DNA oligomers, K(obs) values are similar at high [salt], but diverge as [salt] decreases because -S(a)K(obs) identical with--partial partial differential ln K(obs)/ partial differential ln a+/- increases strongly with |Z(D)|. For binding of KWK6 near 0.1 M salt, -S(a)K(obs) is 5.5 +/- 0.2 for dT(pdT)22, 4.0 +/- 0.2 for dT(pdT)10 and 2.9 +/- 0.2 for dT(pdT)6, as compared with 6.5 +/- 0.3 for poly(dT). Similarly, at 0.1 M salt, K(obs) per site for poly(dT) exceeds K(obs) for dT(pdT)22 by 7-fold, for dT(pdT)10 by 50-fold and for dT(pdT)6 by 700-fold. We interpret the reductions in K(obs) and |S(a)K(obs)| with decreasing |Z(D)| as a significant CEE that causes binding to the terminal regions of a nucleic acid to be weaker and less salt dependent than interior binding. We analyze long oligonucleotide-KWK6 binding data in terms of a trapezoidal model for the local (axial) salt cation concentration on single-stranded DNA to estimate the size of the CEE to be at least seven phosphates on each end at 0.1 M salt.  相似文献   

8.
S F Scarlata  T Ropp  C A Royer 《Biochemistry》1989,28(16):6637-6641
High-pressure fluorescence polarization was used to investigate subunit interactions of the histone H2A-H2B dimer and the H3/H4 tetramer isolated from calf thymus (CT) and chicken erythrocyte (CE) chromatin. The proteins were individually labeled with the fluorescent probe 5-(dimethylamino)-naphthalene-1-sulfonate (dansyl or DNS), and the fluorescence polarization was measured as a function of pressure. The long fluorescence lifetime of the probe allows for the observation of global rotations of the protein, the rate of which is dependent upon the aggregation state. From the pressure dependence of the dansyl polarization, the Kd of H2A-H2B dissociation of the CE dimer was found to be approximately 1 X 10(-7) M at 2.0 M NaCl. Lowering the salt concentration to 200 mM slightly stabilized the protein to 6 X 10(-8) M. Our data indicate a small negative volume change for the dissociation of the core particle octamer. The (H3)2(H4)2 tetramer, as was shown in the previous paper (Royer et al., 1989), also formed predominantly dimers of tetramers at higher protein or salt concentrations. In the study presented here, we found the dissociation constant for the H3/H4 octamer to dimer transition to be 1 X 10(-21) M3 (C1/2 = 4 X 10(-8) M) at 2 M NaCl for the CT preparation. Decreasing the salt concentration to 200 mM reduced the stability of the CT H3/H4 octamer to 9 X 10(-21) M3 (C1/2 = 8 X 10(-8) M). The dimer of the CE tetramer also dissociated upon application of pressure in 2 M salt.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The objective of this study is to quantify the contributions of cations, anions and water to stability and specificity of the interaction of lac repressor (lac R) protein with the strong-binding symmetric lac operator (Osym) DNA site. To this end, binding constants Kobs and their power dependences on univalent salt (MX) concentration (SKobs = d log Kobs/d log[MX]) have been determined for the interactions of lac R with Osym operator and with non-operator DNA using filter binding and DNA cellulose chromatography, respectively. For both specific and non-specific binding of lac R, Kobs at fixed salt concentration [KX] increases when chloride (Cl-) is replaced by the physiological anion glutamate (Glu-). At 0.25 M-KX, the increase in Kobs for Osym is observed to be approximately 40-fold, whereas for non-operator DNA the increase in Kobs is estimated by extrapolation to be approximately 300-fold. For non-operator DNA, SKobsRD is independent of salt concentration within experimental uncertainty, and is similar in KCl (SKobs,RDKCl = -9.8(+/- 1.0) between 0.13 M and 0.18 M-KCl) and KGlu (SKobs,RDKGlu = -9.3(+/- 0.7) between 0.23 M and 0.36 M-KGlu). For Osym DNA, SKobsRO varies significantly with the nature of the anion, and, at least in KGlu appears to decrease in magnitude with increasing [KGlu]. Average magnitudes of SKobsRO are less than SKobsRD, and, for specific binding decrease in the order [SKobsRO,KCl[>[SKobsRO,KAc[>[SKobsRO,KGlu[ . Neither KobsRO nor SKobsRO is affected by the choice of univalent cation M+ (Na+, K+, NH4+, or mixtures thereof, all as the chloride salt), and SKobsRO is independent of [MCl] in the range examined (0.125 to 0.3 M). This behavior of SKobsRO is consistent with that expected for a binding process with a large contribution from the polyelectrolyte effect. However, the lack of an effect of the nature of the cation on the magnitude of KobsRO at a fixed [MX] is somewhat unexpected, in view of the order of preference of cations for the immediate vicinity of DNA (NH4+ > K+ > Na+) observed by 23Na nuclear magnetic resonance. For both specific and non-specific binding, the large stoichiometry of cation release from the DNA polyelectrolyte is the dominant contribution to SKobs. To interpret these data, we propose that Glu- is an inert anion, whereas Ac- and Cl- compete with DNA phosphate groups in binding to lac repressor. A thermodynamic estimate of the minimum stoichiometry of water release from lac repressor and Osym operator (210(+/- 30) H2O) is determined from analysis of the apparently significant reduction in [SKobsRO,KGlu[ with increasing [KGlu] in the range 0.25 to 0.9 M. According to this analysis, SKobs values of specific and non-specific binding in KGlu differ primarily because of the release of water in specific binding. In KAc and KCl, we deduce that anion competition affects Kobs and SKobs to an extent which differs for different anions and for the different binding modes.  相似文献   

10.
Lauer S  Goldstein B  Nolan RL  Nolan JP 《Biochemistry》2002,41(6):1742-1751
Cholera toxin entry into mammalian cells is mediated by binding of the pentameric B subunit (CTB) to ganglioside GM(1) in the cell membrane. We used flow cytometry to quantitatively measure in real time the interactions of fluorescently labeled pentameric cholera toxin B-subunit (FITC-CTB) with its ganglioside receptor on microsphere-supported phospholipid membranes. A model that describes the multiple steps of this mode of recognition was developed to guide our flow cytometric experiments and extract relevant equilibrium and kinetic rate constants. In contrast to previous studies, our approach takes into account receptor cross-linking, an important feature for multivalent interactions. From equilibrium measurements, we determined an equilibrium binding constant for a single subunit of FITC-CTB binding monovalently to GM(1) presented in bilayers of approximately 8 x 10(7) M(-1) while that for binding to soluble GM(1)-pentasaccharide was found to be approximately 4 x 10(6) M(-1). From kinetic measurements, we determined the rate constant for dissociation of a single site of FITC-CTB from microsphere-supported bilayers to be (3.21 +/- 0.03) x 10(-3) s(-1), and the rate of association of a site on FITC-CTB in solution to a GM(1) in the bilayer to be (2.8 +/- 0.4) x 10(4) M(-1) s(-1). These values yield a lower estimate for the equilibrium binding constant of approximately 1 x 10(7) M(-1). We determined the equilibrium surface cross-linking constant [(1.1 +/- 0.1) x 10(-12) cm(2)] and from this value and the value for the rate constant for dissociation derived a value of approximately 3.5 x 10(-15) cm(2) s(-1) for the forward rate constant for cross-linking. We also compared the interaction of the receptor binding B-subunit with that of the whole toxin (A- and B-subunits). Our results show that the whole toxin binds with approximately 100-fold higher avidity than the pentameric B-subunit alone which is most likely due to the additional interaction of the A(2)-subunit with the membrane surface. Interaction of cholera toxin B-subunit and whole cholera toxin with gangliosides other than GM(1) revealed specific binding only to GD1(b) and asialo-GM(1). These interactions, however, are marked by low avidity and require high receptor concentrations to be observed.  相似文献   

11.
Proteins are designed to function under crowded conditions where the solute concentration can reach 400 g/L, but they are almost always studied in dilute solutions. To address this discrepancy, we have undertaken a series of studies to determine the effects of high solute concentrations on the thermodynamics of protein equilibria. Recently, we used isothermal titration calorimetry (ITC) to show that high concentrations of mono-, di-, and tetrasaccharides have a small stabilizing effect on the crystallographically defined cytochrome c binding site on yeast ferricytochrome c peroxidase [Morar, A. S., Wang, X., and Pielak, G. J. (2001) Biochemistry 40, 281-285]. Here, we use this technique to show that trisaccharides increase the apparent thermodynamic binding constants for both cytochrome c binding sites on the peroxidase. Mutagenesis studies confirm that the second site includes Asp 148 on the peroxidase. Binding of both cytochrome c molecules is exothermic. The data are interpreted by assuming either the presence or absence of intersite interactions.  相似文献   

12.
Concentration dependence of NaCl salting of 0-1.5 mM lysozyme solution in 0.1 M sodium acetate buffer, pH 4.25, was investigated for NaCl concentration varying up to 0.9 M. Calorimetric experiments demonstrated that depending on the salt concentration the estimated number of the binding sites on the lysozyme surface varied in the range of 5 up to 13, and the increase of salt concentration caused the decrease of the number of accessible sites. The small, but significant, local maximum centered at 0.63 M NaCl concentration indicated the specific salting-out of the lysozyme accompanied by binding of approximately 2-3 chloride anions. Generalized McMillan and Mayer's approach reduced to the third-order virial coefficients demonstrates the domination of lysozyme aggregation upon salt addition (a(21)-h(xxy)) and salt organization on the lysozyme surface (a(12)-h(xyy)) processes.  相似文献   

13.
Intermediates of Aeromonas aminopeptidase are monitored through fluorescence generated by radiationless energy transfer (RET) between enzyme tryptophans and the dansyl group of the bound substrate. Upon binding of the substrate enzyme tryptophan fluorescence is quenched and substrate dansyl fluorescence enhanced. These processes are reversed upon hydrolysis of the Leu-Ala bond and release of Ala-DED from the enzyme. Stopped-flow RET kinetic analysis yields values of kcat = 36 sec-1 and Km = 3.7 microM at pH 7.5 and 20 degrees C. These values represent the highest kcat/Km ratio, 1 X 10(7) M-1 sec-1, of any substrate for Aeromonas aminopeptidase. The excellent binding properties of the peptide permit direct visualization of ES complexes even at enzyme concentrations of 10(-7) M.  相似文献   

14.
Liquid-liquid phase-separation data were obtained for aqueous saline solutions of hen egg-white lysozyme at a fixed protein concentration (87 g/l). The cloud-point temperature (CPT) was measured as a function of salt type and salt concentration to 3 M, at pH 4.0 and 7.0. Salts used included those from mono and divalent cations and anions. For the monovalent cations studied, as salt concentration increases, the CPT increases. For divalent cations, as salt concentration rises, a maximum in the CPT is observed and attributed to ion binding to the protein surface and subsequent water structuring. Trends for sulfate salts were dramatically different from those for other salts because sulfate ion is strongly hydrated and excluded from the lysozyme surface. For anions at fixed salt concentration, the CPT decreases with rising anion kosmotropic character. Comparison of CPTs for pH 4.0 and 7.0 revealed two trends. At low ionic strength for a given salt, differences in CPT can be explained in terms of repulsive electrostatic interactions between protein molecules, while at higher ionic strength, differences can be attributed to hydration forces. A model is proposed for the correlation and prediction of the CPT as a function of salt type and salt concentration. NaCl was chosen as a reference salt, and CPT deviations from that of NaCl were attributed to hydration forces. The Random Phase Approximation, in conjunction with a square-well potential, was used to calculate the strength of protein-protein interactions as a function of solution conditions for all salts studied.  相似文献   

15.
Electrospray ionization mass spectrometry (ESI-MS) has been used to determine the dissociation constants (K(D)s) and binding stoichiometry for tobramycin and paromomycin with a 27-nucleotide RNA construct representing the A-site of the 16S ribosomal RNA. K(D) values determined by holding the ligand concentration fixed are compared with K(D) values derived by holding the RNA target concentration fixed. Additionally, the effect of solution conditions such as the amount of organic solvent present and the amount of salt present in the solution on the K(D) measurement is investigated. It is shown that the preferred method for determining dissociation constants using ESI-MS is holding the RNA target concentration fixed below the expected K(D) and titrating the ligand. K(D) measurements should also be carried out at as high as possible salt concentration to minimize nonspecific binding due primarily to electrostatic interactions. For tobramycin, two nonequivalent binding sites were found with K(D1) = 352 nM and K(D2) = 9 microM. For paromomycin, there is only one binding site with K(D) = 52 nM.  相似文献   

16.
The effect of Cu(II), Ni(II), Zn(II), Mg(II), and Mn(II) on the fluorescence of porcine kidney cytosol leucine aminopeptidase and three of its dansyl(Dns) peptide substrates, Leu-Gly-NHNH-Dns, Leu-Gly-NH(CH2)2NH-Dns, and Leu-Gly-NH(CH2)6NH-Dns, has been investigated. These five metal ions were chosen for study because each binds to the regulatory metal binding site of leucine aminopeptidase. Since the binding is relatively weak, kinetic studies of the different metalloderivatives of the enzyme are normally carried out in the presence of large molar excesses of these metal ions that can potentially affect both the enzyme and substrate. The fluorescence of all of the dansyl-peptides, as well as several other dansyl species, is quenched by Ni(II) and Cu(II), but not by Mg(II), Mn(II), or Zn(II). The absorption spectra of these dansyl substrates are also perturbed by Ni(II) and Cu(II). The rate at which maximal quenching for some dansyl species is attained after mixing with Ni(II) and Cu(II) is slow and the quenching is reversed on addition of EDTA. These results indicate that the quenching is the result of complex formation between the fluorophores and these metal ions. The association constants for the metal complexes have been determined from Stern-Volmer plots. In addition to complex formation, Ni(II) and Cu(II) cause the degradation of Leu-Gly-NHNH-Dns through a two step mechanism involving loss of dansic acid. Ni(II) and Cu(II) also partially quench the fluorescence of leucine aminopeptidase through contact with its surface accessible Trp residues. These observations indicate that care must be taken in stopped flow fluorescence studies of reactions between this enzyme and its dansyl substrates to avoid adverse effects brought about by Ni(II) and Cu(II).  相似文献   

17.
The pK(a) values of most histidines in small peptides and in myoglobin increase on average by 0.30 unit between 0.02 and 1.5 M NaCl [Kao et al. (2000) Biophys. J. 79, 1637]. The DeltapK(a) values reflect primarily the ionic strength dependence of the solvation energy; screening of Coulombic interactions contributes only in a minor way. This implies that Coulombic interactions are weak, or that attractive and repulsive contributions to the pK(a) values are balanced. To distinguish experimentally between these two possibilities, and to further characterize the magnitude and salt sensitivity of surface electrostatic interactions in proteins, the salt dependence of pK(a) values of histidines in staphylococcal nuclease was measured by (1)H NMR spectroscopy. Three of the four histidines titrated with significantly depressed pK(a) values, and the salt sensitivity of all histidine pK(a) values was substantial. In three cases, the pK(a) values increased by a full unit between 0.01 and 1.5 M KCl. Anion-specific effects were found; the pK(a) values measured under equivalent ionic strengths in SCN(-) and SO(4)(2-) were higher than in Cl(-); the order of the sensitivity of pK(a) values to anions was SCN(-) > Cl(-) > SO(4)(2-). Structure-based pK(a) calculations with continuum methods were performed to interpret the measured effects structurally and to test their ability to capture the experimental behavior. Calculations in which the protein interior was treated empirically with a dielectric constant of 20 reproduced the pK(a) values and their dependence on the concentration of Cl(-). According to the calculations, the pK(a) values are depressed because of unfavorable self-energies and repulsive Coulombic interactions. Their striking salt sensitivity reflects screening of weak, repulsive, Coulombic interactions among charges separated by more than 10 A. Long-range Coulombic interactions on the surfaces of proteins are weak, but they can add up to produce substantial electrostatic effects when positive and negative charges are not balanced.  相似文献   

18.
R F Steiner  S Albaugh 《Biopolymers》1990,29(6-7):1005-1014
The interaction of cyclosporin A and dansyl cyclosporin A with bovine and wheat germ calmodulin has been monitored by measurements of induced changes in dansyl and bound toluidinyl naphthalene sulfonate fluorescence. The interaction is Ca2(+)-dependent and 1:1. Measurements of the efficiency of radiationless energy transfer from bound dansyl cyclosporin A to an acceptor group located on Cys-27 of wheat germ calmodulin suggest that the primary binding site is not located on the N-terminal lobe (residues 1-65). However, studies with proteolytic fragments of calmodulin indicate that elements of the N-terminal half-molecule (residues 1-77) may be involved in the stabilization of the binding site. The binding of cyclosporin alters the physical properties of calmodulin and, in particular, reduces the localized rotational mobility of a fluorescent probe.  相似文献   

19.
Two known dansyl labels (I, II) and 5-[2-(iodoacetamido)ethylamino]-1-naphthalene-sulfonic acid (III) and three new azo-dyes (IV - VI) were covalently attached to alpha-chymotrypsin and to basic pancreatic trypsin inhibitor by four different reactive groups. In order to protect the contact region of the proteins the complex of the two proteins was labeled. Advantage was taken of the fact that a group which is buried in the complex reacts about (see article) times slower than a group which is always exposed (K = dissociation equilibrium constant, [C] = concentration of the complex). The complex was dissociated at pH 3 and the labeled proteins were isolated by column chromatography. They were fully active. The dansyl label was immobilized when introduced by dansyl chloride but highly mobile when attached via the longer imidoester group (II). Changes of absorption and of fluorescence which occur when differently labeled reaction partners recombine were studied. Changes in absorption (up to 18%) were mainly due to interactions of the label of one protein with the other protein. Fluorescence changes of up to 480% could be obtained. They were interpreted in terms of a F?rster type energy transfer between donor and acceptor labels and changes of absorption and quantum yield due to interactions of the labels with the proteins. The kinetic constants of complex formation are not seriously altered by the labels (B?sterling, B & Engel, J. (1976) this J. 357, 1297-1307, succeeding). It is concluded that the labeling technique may be of general value for kinetic and equilibrium studies of protein associations.  相似文献   

20.
Cyanide (5 X 10(-3) M) and thioacetamide (5 X 10(-3) M) increase the P50 values (P02 required for 50% oxygenation) of hemocyanin by 100%, respectively. Using an ion-exchange method involving 14CN-, we have found that cyanide forms a 1:1 complex with hemocyanin in the concentration range examined: Kf = 2.3 X Mw M-1 at room temperature, where Kf is association constant and Mw is molecular weight of hemocyanin. This strong binding of cyanide to hemocyanin is to be expected from the effect of this ion on the oxygenation of hemocyanin. The effects of manganese(II) ion and fluoride on the oxygenation of hemocyanin are found to be weak. The nmr measurements, however, suggest that manganese(II) ion does have some interactions with the active site of hemocyanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号