共查询到20条相似文献,搜索用时 7 毫秒
1.
The Saccharomyces cerevisiae Pus2 protein encoded by YGL063w ORF is a mitochondrial tRNA:Psi27/28-synthase 下载免费PDF全文
The RNA:pseudouridine (Psi)-synthase family is one of the most complex families of RNA modification enzymes. Ten genes encoding putative RNA:Psi-synthases have been identified in S. cerevisiae. Most of the encoded enzymes have been characterized experimentally. Only the putative RNA:Psi-synthase Pus2p (encoded by the YGL063w ORF) had no identified substrate. Here, we analyzed Psi residues in cytoplasmic and mitochondrial tRNAs extracted from S. cerevisiae strains, carrying disruptions in the PUS1 and/or PUS2 ORFs. Our results demonstrate that Pus2p is a mitochondrial-specific tRNA:Psi-synthase acting at positions 27 and 28 in tRNAs. The importance of the Asp56 residue in the conserved ARTD motif of the Pus2p catalytic site is demonstrated in vivo. Interestingly, in spite of the absence of a characteristic N-terminal targeting signal, our data strongly suggest an efficient and rapid targeting of Pus2p in yeast mitochondria. In contradiction with the commonly held idea that a unique nuclear gene encodes the enzyme required for both cytoplasmic and mitochondrial tRNA modifications, here we show the existence of an enzyme specifically dedicated to mitochondrial tRNA modification (Pus2p), the corresponding modification in cytoplasmic tRNAs being catalyzed by another protein (Pus1p). 相似文献
2.
3.
Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p 总被引:1,自引:0,他引:1 下载免费PDF全文
Hellmuth K Grosjean H Motorin Y Deinert K Hurt E Simos G 《Nucleic acids research》2000,28(23):4604-4610
4.
5.
Identification and characterization of Saccharomyces cerevisiae Cdc6 DNA-binding properties 下载免费PDF全文
Recent studies have shown that Cdc6 is an essential regulator in the formation of DNA replication complexes. However, the biochemical nature of the Cdc6 molecule is still largely unknown. In this report, we present evidence that the Saccharomyces cerevisiae Cdc6 protein is a double-stranded DNA-binding protein. First, we have demonstrated that the purified yeast Cdc6 can bind to double-stranded DNA (dissociation constant approximately 1 x 10(-7) M), not to single-stranded DNA, and that the Cdc6 molecule is a homodimer in its native form. Second, we show that GST-Cdc6 fusion proteins expressed in Escherichia coli bind DNA in an electrophoretic mobility shift assay. Cdc6 antibodies and GST antibodies, but not preimmune serum, induce supershifts of GST-Cdc6 and DNA complexes in these assays, which also showed that GST-Cdc6 binds to various DNA probes without apparent sequence specificity. Third, the minimal requirement for the binding of Cdc6 to DNA has been mapped within its N-terminal 47-amino acid sequence (the NP6 region). This minimal binding domain shows identical DNA-binding properties to those possessed by full-length Cdc6. Fourth, the GST-NP6 protein competes for DNA binding with distamycin A, an antibiotic that chelates DNA within the minor groove of the A+T-rich region. Finally, site-direct mutagenesis studies revealed that the (29)KRKK region of Cdc6 is essential for Cdc6 DNA-binding activity. To further elucidate the function of Cdc6 DNA binding in vivo, we demonstrated that a binding mutant of Cdc6 fails to complement either cdc6-1 temperature-sensitive mutant cells or Deltacdc6 null mutant cells at the nonpermissive temperature. The mutant gene also conferred growth impairments and increased the plasmid loss in its host, indicative of defects in DNA synthesis. Because the mutant defective in DNA binding also fails to stimulate Abf1 ARS1 DNA-binding activity, our results suggest that Cdc6 DNA-binding activity may play a pivotal role in the initiation of DNA replication. 相似文献
6.
7.
8.
Yeast RNA:pseudouridine synthetase Pus1 catalyzes the formation of pseudouridines in tRNAs. We report here the quaternary structure of purified recombinant Pus1 in solution. At low concentration, in the absence of tRNA, Pus1 oligomerizes while at high concentration it precipitates. This oligomerization/aggregation can be prevented by addition of dodecyl-beta-D-maltoside or of yeast tRNA(Phe). The detergent does not significantly interfere with substrate binding or with activity of Pus1. The stoichiometry of the Pus1/tRNA(Phe) complex is 1/1. We conclude that the detergent covers an hydrophobic region of the RNA binding pocket responsible for Pus1 aggregation. 相似文献
9.
Muller S Fourmann JB Loegler C Charpentier B Branlant C 《Nucleic acids research》2007,35(16):5610-5624
Protein aNOP10 has an essential scaffolding function in H/ACA sRNPs and its interaction with the pseudouridine(Ψ)-synthase aCBF5 is required for the RNA-guided RNA:Ψ-synthase activity. Recently, aCBF5 was shown to catalyze the isomerization of U55 in tRNAs without the help of a guide sRNA. Here we show that the stable anchoring of aCBF5 to tRNAs relies on its PUA domain and the tRNA CCA sequence. Nonetheless, interaction of aNOP10 with aCBF5 can counterbalance the absence of the PUA domain or the CCA sequence and more generally helps the aCBF5 tRNA:Ψ55-synthase activity. Whereas substitution of the aNOP10 residue Y14 by an alanine disturbs this activity, it only impairs mildly the RNA-guided activity. The opposite effect was observed for the aNOP10 variant H31A. Substitution K53A or R202A in aCBF5 impairs both the tRNA:Ψ55-synthase and the RNA-guided RNA:Ψ-synthase activities. Remarkably, the presence of aNOP10 compensates for the negative effect of these substitutions on the tRNA: Ψ55-synthase activity. Substitution of the aCBF5 conserved residue H77 that is expected to extrude the targeted U residue in tRNA strongly affects the efficiency of U55 modification but has no major effect on the RNA-guided activity. This negative effect can also be compensated by the presence of aNOP10. 相似文献
10.
11.
12.
The yeast cell division cycle gene CDC6 was isolated by complementation of a temperature-sensitive cdc6 mutant with a genomic library. The amino acid sequence of the 48 kDalton CDC6 gene product, as deduced from DNA sequence data, includes the three consensus peptide motifs involved in guanine nucleotide binding and GTPase activity, a target site for cAMP-dependent protein kinase and a carboxy-terminal domain related to metallothionein sequences. A plasmid-encoded CDC6-beta-galactosidase hybrid protein was located at the plasma membrane by indirect immunofluorescence. Disruption experiments indicate that the CDC6 gene product is essential for mitotic growth. 相似文献
13.
Identification of the TRM2 gene encoding the tRNA(m5U54)methyltransferase of Saccharomyces cerevisiae 下载免费PDF全文
The presence of 5-methyluridine (m5U) at position 54 is a ubiquitous feature of most bacterial and eukaryotic elongator tRNAs. In this study, we have identified and characterized the TRM2 gene that encodes the tRNA(m5U54)methyltransferase, responsible for the formation of this modified nucleoside in Saccharomyces cerevisiae. Transfer RNA isolated from TRM2-disrupted yeast strains does not contain the m5U54 nucleoside. Moreover, a glutathione S-transferase (GST) tagged recombinant, Trm2p, expressed in Escherichia coli displayed tRNA(m5U54)methyltransferase activity using as substrate tRNA isolated from a trm2 mutant strain, but not tRNA isolated from a TRM2 wild-type strain. In contrast to what is found for the tRNA(m5U54)methyltransferase encoding gene trmA+ in E. coli, the TRM2 gene is not essential for cell viability and a deletion strain shows no obvious phenotype. Surprisingly, we found that the TRM2 gene was previously identified as the RNC1/NUD1 gene, believed to encode the yNucR endo-exonuclease. The expression and activity of the yNucR endo-exonuclease is dependent on the RAD52 gene, and does not respond to increased gene dosage of the RNC1/NUD1 gene. In contrast, we find that the expression of a trm2-LacZ fusion and the activity of the tRNA(m5U54)methyltransferase is not regulated by the RAD52 gene and does respond on increased gene dosage of the TRM2 (RNC1/NUD1) gene. Furthermore, there was no nuclease activity associated with a GST-Trm2 recombinant protein. The purified yNucR endo-exonuclease has been reported to have an NH2-D-E-K-N-L motif, which is not found in the Trm2p. Therefore, we suggest that the yNucR endo-exonuclease is encoded by a gene other than TRM2. 相似文献
14.
Identification and characterization of the centromere from chromosome XIV in Saccharomyces cerevisiae. 总被引:4,自引:7,他引:4 下载免费PDF全文
A functional centromere located on a small DNA restriction fragment from Saccharomyces cerevisiae was identified as CEN14 by integrating centromere-adjacent DNA plus the URA3 gene by homologous recombination into the yeast genome and then by localizing the URA3 gene to chromosome XIV by standard tetrad analysis. DNA sequence analysis revealed that CEN14 possesses sequences (elements I, II, and III) that are characteristic of other yeast centromeres. Mitotic and meiotic analyses indicated that the CEN14 function resides on a 259-base-pair (bp) RsaI-EcoRV restriction fragment, containing sequences that extend only 27 bp to the right of the element I to III region. In conjunction with previous findings on CEN3 and CEN11, these results indicate that the specific DNA sequences required in cis for yeast centromere function are contained within a region about 150 bp in length. 相似文献
15.
16.
17.
W W Wells C H Kuo W F Naccarato 《Biochemical and biophysical research communications》1974,61(2):644-650
A mannosyl inositol isolated from Baker's yeast was shown to be α-linked from the 1 position of mannose to the 6 position of myo-inositol by comparison of the products of permethylation, hydrolysis, and reduction of the disaccharide. The structure was established using chemical and enzymatic methods, gas chromatography, and combined gas chromatographymass spectrometry. 相似文献
18.
Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in Saccharomyces cerevisiae 总被引:2,自引:0,他引:2
We recently demonstrated that yeast actively import lysophosphatidylethanolamine (lyso-PtdEtn) through the action of plasma membrane P-type ATPases and rapidly acylate it to form PtdEtn. The predominant lyso-PtdEtn acyltransferase (LPEAT) activity present in cellular extracts is acyl-CoA dependent, but the identity of the gene encoding this activity was unknown. We now demonstrate that a previously uncharacterized open reading frame, YOR175C, encodes the major acyl-CoA-dependent LPEAT activity in yeast and henceforth refer to it as ALE1 (acyltransferase for lyso-PtdEtn). Ale1p is an integral membrane protein and is highly enriched in the mitochondria-associated endoplasmic reticulum membrane. It is a member of the membrane-bound O-acyltransferase family and possesses a dibasic motif at its C terminus that is likely responsible for Golgi retrieval and retention in the endoplasmic reticulum. An ale1Delta strain retains only trace amounts of acyl-CoA-dependent LPEAT activity, and strains lacking the capacity for PtdEtn synthesis via the phosphatidylserine decarboxylase and Kennedy pathways show a stringent requirement for both exogenous lyso-PtdEtn and a functional ALE1 gene for viability. Ale1p catalytic activity has a pH optimum between pH 7 and 7.5 and a strong preference for unsaturated acyl-CoA substrates. 相似文献
19.
Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing. 总被引:7,自引:6,他引:7 下载免费PDF全文
Saccharomyces cerevisiae strains carrying los1-1 mutations are defective in tRNA processing; at 37 degrees C, such strains accumulate tRNA precursors which have mature 5' and 3' ends but contain intervening sequences. Strains bearing los1-1 and an intron-containing ochre-suppressing tRNA gene, SUP4(0), also fail to suppress the ochre mutations ade2-1(0) and can1-100(0) at 34 degrees C. To understand the role of the LOS1 product in tRNA splicing, we initiated a molecular study of the LOS1 gene. Two plasmids, YEpLOS1 and YCpLOS1, that complement the los1-1 phenotype were isolated from the YEp24 and YCp50 libraries, respectively. YEpLOS1 and YCpLOS1 had overlapping restriction maps, indicating that the DNA in the overlapping segment could complement los1-1 when present in multiple or single copy. Integration of plasmid DNA at the LOS1 locus confirmed that these clones contained authentic LOS1 sequences. Southern analyses showed that LOS1 is a single copy gene. The locations of the LOS1 gene within YEpLOS1 and YCpLOS1 were determined by deletion and gamma-delta mapping. Two genomic disruptions of the LOS1 gene were constructed, i.e., an insertion of a 1.2-kilobase fragment carrying the yeast URA3 gene, los1::URA3, and a 2.4-kilobase deletion from the LOS1 gene, los1-delta V. Disruption or deletion of most of the LOS1 gene was not lethal; cells carrying the disrupted los1 alleles were viable and had phenotypes similar to those of cells carrying the los1-1 allele. Thus, it appears that the los1 gene product expedites tRNA splicing at elevated temperatures but is not essential for this process. 相似文献
20.