首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
MOTIVATION: Homology search for RNAs can use secondary structure information to increase power by modeling base pairs, as in covariance models, but the resulting computational costs are high. Typical acceleration strategies rely on at least one filtering stage using sequence-only search. RESULTS: Here we present the multi-segment CYK (MSCYK) filter, which implements a heuristic of ungapped structural alignment for RNA homology search. Compared to gapped alignment, this approximation has lower computation time requirements (O(N?) reduced to O(N3), and space requirements (O(N3) reduced to O(N2). A vector-parallel implementation of this method gives up to 100-fold speed-up; vector-parallel implementations of standard gapped alignment at two levels of precision give 3- and 6-fold speed-ups. These approaches are combined to create a filtering pipeline that scores RNA secondary structure at all stages, with results that are synergistic with existing methods.  相似文献   

2.
MOTIVATION: Comparing two protein databases is a fundamental task in biosequence annotation. Given two databases, one must find all pairs of proteins that align with high score under a biologically meaningful substitution score matrix, such as a BLOSUM matrix (Henikoff and Henikoff, 1992). Distance-based approaches to this problem map each peptide in the database to a point in a metric space, such that peptides aligning with higher scores are mapped to closer points. Many techniques exist to discover close pairs of points in a metric space efficiently, but the challenge in applying this work to proteomic comparison is to find a distance mapping that accurately encodes all the distinctions among residue pairs made by a proteomic score matrix. Buhler (2002) proposed one such mapping but found that it led to a relatively inefficient algorithm for protein-protein comparison. RESULTS: This work proposes a new distance mapping for peptides under the BLOSUM matrices that permits more efficient similarity search. We first propose a new distance function on peptides derived from a given score matrix. We then show how to map peptides to bit vectors such that the distance between any two peptides is closely approximated by the Hamming distance (i.e. number of mismatches) between their corresponding bit vectors. We combine these two results with the LSH-ALL-PAIRS-SIM algorithm of Buhler (2002) to produce an improved distance-based algorithm for proteomic comparison. An initial implementation of the improved algorithm exhibits sensitivity within 5% of that of the original LSH-ALL-PAIRS-SIM, while running up to eight times faster.  相似文献   

3.
Fast, efficient, and reliable algorithms for pairwise alignment of protein structures are in ever-increasing demand for analyzing the rapidly growing data on protein structures. CLePAPS is a tool developed for this purpose. It distinguishes itself from other existing algorithms by the use of conformational letters, which are discretized states of 3D segmental structural states. A letter corresponds to a cluster of combinations of the three angles formed by Calpha pseudobonds of four contiguous residues. A substitution matrix called CLESUM is available to measure the similarity between any two such letters. CLePAPS regards an aligned fragment pair (AFP) as an ungapped string pair with a high sum of pairwise CLESUM scores. Using CLESUM scores as the similarity measure, CLePAPS searches for AFPs by simple string comparison. The transformation which best superimposes a highly similar AFP can be used to superimpose the structure pairs under comparison. A highly scored AFP which is consistent with several other AFPs determines an initial alignment. CLePAPS then joins consistent AFPs guided by their similarity scores to extend the alignment by several "zoom-in" iteration steps. A follow-up refinement produces the final alignment. CLePAPS does not implement dynamic programming. The utility of CLePAPS is tested on various protein structure pairs.  相似文献   

4.
There is a need for faster and more sensitive algorithms for sequence similarity searching in view of the rapidly increasing amounts of genomic sequence data available. Parallel processing capabilities in the form of the single instruction, multiple data (SIMD) technology are now available in common microprocessors and enable a single microprocessor to perform many operations in parallel. The ParAlign algorithm has been specifically designed to take advantage of this technology. The new algorithm initially exploits parallelism to perform a very rapid computation of the exact optimal ungapped alignment score for all diagonals in the alignment matrix. Then, a novel heuristic is employed to compute an approximate score of a gapped alignment by combining the scores of several diagonals. This approximate score is used to select the most interesting database sequences for a subsequent Smith-Waterman alignment, which is also parallelised. The resulting method represents a substantial improvement compared to existing heuristics. The sensitivity and specificity of ParAlign was found to be as good as Smith-Waterman implementations when the same method for computing the statistical significance of the matches was used. In terms of speed, only the significantly less sensitive NCBI BLAST 2 program was found to outperform the new approach. Online searches are available at http://dna.uio.no/search/  相似文献   

5.
MOTIVATION: Word-matching algorithms such as BLAST are routinely used for sequence comparison. These algorithms typically use areas of matching words to seed alignments which are then used to assess the degree of sequence similarity. In this paper, we show that by formally separating the word-matching and sequence-alignment process, and using information about word frequencies to generate alignments and similarity scores, we can create a new sequence-comparison algorithm which is both fast and sensitive. The formal split between word searching and alignment allows users to select an appropriate alignment method without affecting the underlying similarity search. The algorithm has been used to develop software for identifying entries in DNA sequence databases which are contaminated with vector sequence. RESULTS: We present three algorithms, RAPID, PHAT and SPLAT, which together allow vector contaminations to be found and assessed extremely rapidly. RAPID is a word search algorithm which uses probabilities to modify the significance attached to different words; PHAT and SPLAT are alignment algorithms. An initial implementation has been shown to be approximately an order of magnitude faster than BLAST. The formal split between word searching and alignment not only offers considerable gains in performance, but also allows alignment generation to be viewed as a user interface problem, allowing the most useful output method to be selected without affecting the underlying similarity search. Receiver Operator Characteristic (ROC) analysis of an artificial test set allows the optimal score threshold for identifying vector contamination to be determined. ROC curves were also used to determine the optimum word size (nine) for finding vector contamination. An analysis of the entire expressed sequence tag (EST) subset of EMBL found a contamination rate of 0.27%. A more detailed analysis of the 50 000 ESTs in est10.dat (an EST subset of EMBL) finds an error rate of 0.86%, principally due to two large-scale projects. AVAILABILITY: A Web page for the software exists at http://bioinf.man.ac.uk/rapid, or it can be downloaded from ftp://ftp.bioinf.man.ac.uk/RAPID CONTACT: crispin@cs.man.ac.uk  相似文献   

6.
MOTIVATION: Comparison of multimegabase genomic DNA sequences is a popular technique for finding and annotating conserved genome features. Performing such comparisons entails finding many short local alignments between sequences up to tens of megabases in length. To process such long sequences efficiently, existing algorithms find alignments by expanding around short runs of matching bases with no substitutions or other differences. Unfortunately, exact matches that are short enough to occur often in significant alignments also occur frequently by chance in the background sequence. Thus, these algorithms must trade off between efficiency and sensitivity to features without long exact matches. RESULTS: We introduce a new algorithm, LSH-ALL-PAIRS, to find ungapped local alignments in genomic sequence with up to a specified fraction of substitutions. The length and substitution rate of these alignments can be chosen so that they appear frequently in significant similarities yet still remain rare in the background sequence. The algorithm finds ungapped alignments efficiently using a randomized search technique, locality-sensitive hashing. We have found LSH-ALL-PAIRS to be both efficient and sensitive for finding local similarities with as little as 63% identity in mammalian genomic sequences up to tens of megabases in length  相似文献   

7.
Detection of homologous proteins with low-sequence identity to a given target (remote homologues) is routinely performed with alignment algorithms that take advantage of sequence profile. In this article, we investigate the efficacy of different alignment procedures for the task at hand on a set of 185 protein pairs with similar structures but low-sequence similarity. Criteria based on the SCOP label detection and MaxSub scores are adopted to score the results. We investigate the efficacy of alignments based on sequence-sequence, sequence-profile, and profile-profile information. We confirm that with profile-profile alignments the results are better than with other procedures. In addition, we report, and this is novel, that the selection of the results of the profile-profile alignments can be improved by using Shannon entropy, indicating that this parameter is important to recognize good profile-profile alignments among a plethora of meaningless pairs. By this, we enhance the global search accuracy without losing sensitivity and filter out most of the erroneous alignments. We also show that when the entropy filtering is adopted, the quality of the resulting alignments is comparable to that computed for the target and template structures with CE, a structural alignment program.  相似文献   

8.
Nowadays, the evolution of information technologies requires fast similarity search tools for analyzing new data types as audio, video, or images. The usual search by keys or records is not possible and to search on these databases is a compute-intensive problem. Regarding this, in the latest years, compute-intensive coprocessors (mainly NVIDIA GPUs) have been studied as a tool for accelerating sequential processing algorithms. In this work, we implement kNN and range queries on the recently launched Intel Xeon Phi coprocessor. We developed exhaustive and also indexing algorithms using the LC index. This index has been widely studied in sequential computing to accelerate similarity search on multimedia databases. We implement and compare different exhaustive and indexing versions showing some key factors in Xeon Phi to deal with this type of search. For indexing algorithms, we used a strategy based on cluster distribution among cores LC MIC Dist-C obtaining up to 168\(\times \) over the sequential exhaustive algorithm. Our algorithms using exhaustive strategies in Xeon Phi for range queries achieve up to 22\(\times \) speed-up over the sequential counterpart compared to the 12\(\times \) of a 20-core machine, and a similar advantage is achieved for kNN queries. Comparing with GPUs, we obtain higher performance on our indexing algorithms on Intel Xeon Phi. However, GPU works faster with memory-aligned access exhaustive algorithms. Our exhaustive approaches on Xeon Phi can be used on a wide class of databases, for example, non-metric spaces. Finally, we extend our algorithms to be used with large databases that do not fit in the coprocessor memory, showing a good scalability with the number of elements.  相似文献   

9.
Position weight matrices are an important method for modeling signals or motifs in biological sequences, both in DNA and protein contexts. In this paper, we present fast algorithms for the problem of finding significant matches of such matrices. Our algorithms are of the online type, and they generalize classical multipattern matching, filtering, and superalphabet techniques of combinatorial string matching to the problem of weight matrix matching. Several variants of the algorithms are developed, including multiple matrix extensions that perform the search for several matrices in one scan through the sequence database. Experimental performance evaluation is provided to compare the new techniques against each other as well as against some other online and index-based algorithms proposed in the literature. Compared to the brute-force O(mn) approach, our solutions can be faster by a factor that is proportional to the matrix length m. Our multiple-matrix filtration algorithm had the best performance in the experiments. On a current PC, this algorithm finds significant matches (p = 0.0001) of the 123 JASPAR matrices in the human genome in about 18 minutes.  相似文献   

10.
Making sense of score statistics for sequence alignments   总被引:1,自引:0,他引:1  
The search for similarity between two biological sequences lies at the core of many applications in bioinformatics. This paper aims to highlight a few of the principles that should be kept in mind when evaluating the statistical significance of alignments between sequences. The extreme value distribution is first introduced, which in most cases describes the distribution of alignment scores between a query and a database. The effects of the similarity matrix and gap penalty values on the score distribution are then examined, and it is shown that the alignment statistics can undergo an abrupt phase transition. A few types of random sequence databases used in the estimation of statistical significance are presented, and the statistics employed by the BLAST, FASTA and PRSS programs are compared. Finally the different strategies used to assess the statistical significance of the matches produced by profiles and hidden Markov models are presented.  相似文献   

11.
Historically, in computational biology the fast Fourier transform (FFT) has been used almost exclusively to count the number of exact letter matches between two biosequences. This paper presents an FFT algorithm that can compute the match score of a sequence against a position-specific scoring matrix (PSSM). Our algorithm finds the PSSM score simultaneously over all offsets of the PSSM with the sequence, although like all previous FFT algorithms, it still disallows gaps. Although our algorithm is presented in the context of global matching, it can be adapted to local matching without gaps. As a benchmark, our PSSM-modified FFT algorithm computed pairwise match scores. In timing experiments, our most efficient FFT implementation for pairwise scoring appeared to be 10 to 26 times faster than a traditional FFT implementation, with only a factor of 2 in the acceleration attributable to a previously known compression scheme. Many important algorithms for detecting biosequence similarities, e.g., gapped BLAST or PSIBLAST, have a heuristic screening phase that disallows gaps. This paper demonstrates that FFT algorithms merit reconsideration in these screening applications.  相似文献   

12.
The estimation of amino acid replacement frequencies during molecular evolution is crucial for many applications in sequence analysis. Score matrices for database search programs or phylogenetic analysis rely on such models of protein evolution. Pioneering work was done by Dayhoff et al. (1978) who formulated a Markov model of evolution and derived the famous PAM score matrices. Her estimation procedure for amino acid exchange frequencies is restricted to pairs of proteins that have a constant and small degree of divergence. Here we present an improved estimator, called the resolvent method, that is not subject to these limitations. This extension of Dayhoff's approach enables us to estimate an amino acid substitution model from alignments of varying degree of divergence. Extensive simulations show the capability of the new estimator to recover accurately the exchange frequencies among amino acids. Based on the SYSTERS database of aligned protein families (Krause and Vingron, 1998) we recompute a series of score matrices.  相似文献   

13.
Almost all protein database search methods use amino acid substitution matrices for scoring, optimizing, and assessing the statistical significance of sequence alignments. Much care and effort has therefore gone into constructing substitution matrices, and the quality of search results can depend strongly upon the choice of the proper matrix. A long-standing problem has been the comparison of sequences with biased amino acid compositions, for which standard substitution matrices are not optimal. To address this problem, we have recently developed a general procedure for transforming a standard matrix into one appropriate for the comparison of two sequences with arbitrary, and possibly differing compositions. Such adjusted matrices yield, on average, improved alignments and alignment scores when applied to the comparison of proteins with markedly biased compositions. Here we review the application of compositionally adjusted matrices and consider whether they may also be applied fruitfully to general purpose protein sequence database searches, in which related sequence pairs do not necessarily have strong compositional biases. Although it is not advisable to apply compositional adjustment indiscriminately, we describe several simple criteria under which invoking such adjustment is on average beneficial. In a typical database search, at least one of these criteria is satisfied by over half the related sequence pairs. Compositional substitution matrix adjustment is now available in NCBI's protein-protein version of blast.  相似文献   

14.

Background  

Many algorithms exist for protein structural alignment, based on internal protein coordinates or on explicit superposition of the structures. These methods are usually successful for detecting structural similarities. However, current practical methods are seldom supported by convergence theories. In particular, although the goal of each algorithm is to maximize some scoring function, there is no practical method that theoretically guarantees score maximization. A practical algorithm with solid convergence properties would be useful for the refinement of protein folding maps, and for the development of new scores designed to be correlated with functional similarity.  相似文献   

15.
Accelerated Profile HMM Searches   总被引:4,自引:0,他引:4  
Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.  相似文献   

16.
Kawabata T  Nishikawa K 《Proteins》2000,41(1):108-122
A number of automatic protein structure comparison methods have been proposed; however, their similarity score functions are often decided by the researchers' intuition and trial-and-error, and not by theoretical background. We propose a novel theory to evaluate protein structure similarity, which is based on the Markov transition model of evolution. Our similarity score between structures i and j is defined as log P(j --> i)/P(i), where P(j --> i) is the probability that structure j changes to structure i during the evolutionary process, and P(i) is the probability that structure i appears by chance. This is a reasonable definition of structure similarity, especially for finding evolutionarily related (homologous) similarity. The probability P(j --> i) is estimated by the Markov transition model, which is similar to the Dayhoff's substitution model between amino acids. To estimate the parameters of the model, homologous protein structure pairs are collected using sequence similarity, and the numbers of structure transitions within the pairs are counted. Next these numbers are transformed to a transition probability matrix of the Markov transition. Transition probabilities for longer time are obtained by multiplying the probability matrix by itself several times. In this study, we generated three types of structure similarity scores: an environment score, a residue-residue distance score, and a secondary structure elements (SSE) score. Using these scores, we developed the structure comparison program, Matras (MArkovian TRAnsition of protein Structure). It employs a hierarchical alignment algorithm, in which a rough alignment is first obtained by SSEs, and then is improved with more detailed functions. We attempted an all-versus-all comparison of the SCOP database, and evaluated its ability to recognize a superfamily relationship, which was manually assigned to be homologous in the SCOP database. A comparison with the FSSP database shows that our program can recognize more homologous similarity than FSSP. We also discuss the reliability of our method, by studying the disagreement between structural classifications by Matras and SCOP.  相似文献   

17.
The rapidly increasing amount of public data in chemistry and biology provides new opportunities for large-scale data mining for drug discovery. Systematic integration of these heterogeneous sets and provision of algorithms to data mine the integrated sets would permit investigation of complex mechanisms of action of drugs. In this work we integrated and annotated data from public datasets relating to drugs, chemical compounds, protein targets, diseases, side effects and pathways, building a semantic linked network consisting of over 290,000 nodes and 720,000 edges. We developed a statistical model to assess the association of drug target pairs based on their relation with other linked objects. Validation experiments demonstrate the model can correctly identify known direct drug target pairs with high precision. Indirect drug target pairs (for example drugs which change gene expression level) are also identified but not as strongly as direct pairs. We further calculated the association scores for 157 drugs from 10 disease areas against 1683 human targets, and measured their similarity using a [Formula: see text] score matrix. The similarity network indicates that drugs from the same disease area tend to cluster together in ways that are not captured by structural similarity, with several potential new drug pairings being identified. This work thus provides a novel, validated alternative to existing drug target prediction algorithms. The web service is freely available at: http://chem2bio2rdf.org/slap.  相似文献   

18.
Recommender systems are designed to assist individual users to navigate through the rapidly growing amount of information. One of the most successful recommendation techniques is the collaborative filtering, which has been extensively investigated and has already found wide applications in e-commerce. One of challenges in this algorithm is how to accurately quantify the similarities of user pairs and item pairs. In this paper, we employ the multidimensional scaling (MDS) method to measure the similarities between nodes in user-item bipartite networks. The MDS method can extract the essential similarity information from the networks by smoothing out noise, which provides a graphical display of the structure of the networks. With the similarity measured from MDS, we find that the item-based collaborative filtering algorithm can outperform the diffusion-based recommendation algorithms. Moreover, we show that this method tends to recommend unpopular items and increase the global diversification of the networks in long term.  相似文献   

19.
Tandem mass spectrometry (MS/MS) combined with protein database searching has been widely used in protein identification. A validation procedure is generally required to reduce the number of false positives. Advanced tools using statistical and machine learning approaches may provide faster and more accurate validation than manual inspection and empirical filtering criteria. In this study, we use two feature selection algorithms based on random forest and support vector machine to identify peptide properties that can be used to improve validation models. We demonstrate that an improved model based on an optimized set of features reduces the number of false positives by 58% relative to the model which used only search engine scores, at the same sensitivity score of 0.8. In addition, we develop classification models based on the physicochemical properties and protein sequence environment of these peptides without using search engine scores. The performance of the best model based on the support vector machine algorithm is at 0.8 AUC, 0.78 accuracy, and 0.7 specificity, suggesting a reasonably accurate classification. The identified properties important to fragmentation and ionization can be either used in independent validation tools or incorporated into peptide sequencing and database search algorithms to improve existing software programs.  相似文献   

20.
Enzyme function less conserved than anticipated   总被引:13,自引:0,他引:13  
The level of sequence similarity that implies similarity in protein structure is well established. Recently, many groups proposed thresholds for similarity in sequence implying similarity in enzymatic function. All previous results suggest the strong conservation of enzymatic function above levels of 50% pairwise sequence identity. Here, I argue that all groups substantially overestimated the conservation of enzyme function because their data sets were either too biased, or too small. An unbiased analysis suggested that less than 30% of the pair fragments above 50% sequence identity have entirely identical EC numbers. Another surprising finding was that even BLAST E-values below 10(-50) did not suffice to automatically transfer enzyme function without errors. As expected, most misclassifications originated from similarities in relatively short regions and/or from transferring annotations for different domains. Both problems cannot be corrected easily by adjusting the thresholds for automatic transfer of genome annotations. A score relating sequence identity to alignment length (distance from HSSP-threshold) outperformed statistical BLAST scores for high sequence similarity. In particular, the distance score allowed error-free transfer of enzyme function for the 10% most similar enzyme pairs. The results illustrated how difficult it is to assess the conservation of protein function and to guarantee error-free genome annotations, in general: sets with millions of pair comparisons might not suffice to arrive at statistically significant conclusions. In practice, the revised detailed estimates for the sequence conservation of enzyme function may provide important benchmarks for everyday sequence analysis and for more cautious automatic genome annotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号