首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The hASBT (human apical Na(+)-dependent bile acid transporter) constitutes a key target of anti-hypercholesterolaemic therapies and pro-drug approaches; physiologically, hASBT actively reclaims bile acids along the terminal ileum via Na(+) co-transport. Previously, TM (transmembrane segment) 7 was identified as part of the putative substrate permeation pathway using SCAM (substitute cysteine accessibility mutagenesis). In the present study, SCAM was extended through EL3 (extracellular loop 3; residues Arg(254)-Val(286)) that leads into TM7 from the exofacial matrix. Activity of most EL3 mutants was significantly hampered upon cysteine substitution, whereas ten (out of 31) were functionally inactive (<10% activity). Since only E282C lacked plasma membrane expression, EL3 amino acids predominantly fulfill critical functional roles during transport. Oppositely charged membrane-impermeant MTS (methanethiosulfonate) reagents {MTSET [(2-trimethylammonium) ethyl MTS] and MTSES [(2-sulfonatoethyl) MTS]} produced mostly similar inhibition profiles wherein only middle and descending loop segments (residues Thr(267)-Val(286)) displayed significant MTS sensitivity. The presence of bile acid substrate significantly reduced the rates of MTS modification for all MTS-sensitive mutants, suggesting a functional association between EL3 residues and bile acids. Activity assessments at equilibrative [Na(+)] revealed numerous Na(+)-sensitive residues, possibly performing auxiliary functions during transport such as transduction of protein conformational changes during translocation. Integration of these data suggests ligand interaction points along EL3 via electrostatic interactions with Arg(256), Glu(261) and probably Glu(282) and a potential cation-pi interaction with Phe(278). We conclude that EL3 amino acids are essential for hASBT activity, probably as primary substrate interaction points using long-range electrostatic attractive forces.  相似文献   

2.
Banerjee A  Ray A  Chang C  Swaan PW 《Biochemistry》2005,44(24):8908-8917
The residues involved in substrate interaction of the human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) remain undefined. Biochemical modification of conserved cysteine residues has suggested their direct involvement in hASBT function. In the present study, we developed novel methanethiosulfonyl (MTS)-bile salt derivatives and describe their reactivity toward hASBT and its mutants. Endogenous Cys residues were subjected to Ala/Thr scanning mutagenesis and subsequent exposure to affinity inactivators. We show that C51A/T, C105A/T, C144A, and C255A/T are loss-of-function mutations. Additionally, C74A/T cell surface expression was abolished suggesting a role in protein folding and/or trafficking. C270A remained largely unaffected in the presence of 1.0 mM polar and charged MTS reagents (MTSEA, MTSES, and MTSET) and retained function similar to wt-hASBT control. However, in the presence of synthetic cholyl- and chenodeoxycholyl-MTS analogues, C270A displayed a significant decrease in K(T) and J(max). Our findings demonstrate that Cys270 is a highly accessible extracellular residue susceptible to thiol modification in its native form that remains largely unaffected upon mutation to Ala. Consequently, C270A provides an ideal scaffold for cysteine scanning mutagenesis studies. Furthermore, the substantial decrease in ligand affinity and maximal transport capacity of C270A suggest that C270 may potentially impact, although not critically, a putative substrate binding domain of hASBT. Overall, bile acid-MTS conjugates can serve as novel and powerful tools to probe the role of endogenous as well as engineered Cys residues and, ultimately, aid in defining their role in the bile acid binding region(s) of hASBT.  相似文献   

3.
Drug intervention that prevents reabsorption of circulating bile acids by the apical (ileal) sodium/bile acid cotransporter (ASBT) may be a promising new therapy for lowering of plasma cholesterol. 2164U90 is a benzothiazepine-based competitive inhibitor of bile acid transport with K(i) values of approximately 10 and 0.068 microM for the homologous human and mouse apical transporters, respectively. Hybrid human-mouse and mouse-human transporters were engineered to identify regions involved in this 150-fold difference in the inhibition constant for 2164U90. A mouse-human chimera with only the most C-terminal hydrophobic domain and the C-terminus of the transporter originating from the human variant was found to have a sensitivity to 2164U90 inhibition similar to that of the human transporter. Conversely, a human-mouse hybrid transporter encompassing the same C-terminal region from the mouse sequence but now inserted into the human sequence demonstrated the greater inhibition seen with the mouse wild type ASBT. Amino acid substitutions, individually or in combinations, of six candidate nonconserved residues between mouse and human transporters in this C-terminal domain showed replacements of Thr294 by Ser and Val295 by Ile to be responsible for the difference in the sensitivity toward 2164U90 seen between the species. The hamster apical SBAT encompassing Ser/Ile in these positions shared the lower sensitivity to 2164U90, as seen with the human ASBT, even though it is identical to the mouse SBAT in the remaining four positions of this region. In addition, the rat ASBT which is identical to the mouse ASBT in this domain also had the high sensitivity to 2164U90 inhibition found for the mouse ASBT. Methanethiosulfonates (MTS) are known to inactivate the sodium/bile acid transporters through alkylation of a cysteine in the most C-terminal hydrophobic domain (1). Inactivation of the human ASBT due to MTS modification of cysteine 270 was shown to be largely abolished when the transporter was preincubated with 2164U90, suggesting that the binding of this benzothiazepine is in the vicinity of position 270. Thus, the domain containing the two most C-terminal putative transmembrane regions of the SBATs, H8-H9, previously shown to constitute part of the binding pocket for bile acids, interacts also with the bile acid transport competitive inhibitor, 2164U90.  相似文献   

4.
Hallén S  Fryklund J  Sachs G 《Biochemistry》2000,39(22):6743-6750
Mammalian sodium/bile acid cotransporters (SBATs) constitute a subgroup of the sodium cotransporter superfamily and function in the enterohepatic circulation of bile acids. They are glycoproteins with an exoplasmic N-terminus, seven or nine transmembrane segments, and a cytoplasmic C-terminus. They exhibit no significant homology with other members of the sodium cotransporter family and there is limited structure/function information available for the SBATs. Membrane-impermeant methanethiosulfonates (MTS) inhibited bile acid transport by alkylation of cysteine 270 (apical SBAT)/266 (basolateral SBAT) that is fully conserved among the sodium/bile acid cotransporters. The accessibility of this residue to MTS reagent is regulated by the natural substrates, sodium and bile acid. In experiments with the apical SBAT, sodium alone increases the reactivity with the thiol reagents as compared to sodium-free medium. In contrast, bile acids protect the SBATs from inactivation, although only in the presence of sodium. The inhibition and protection data suggest that cysteine 270/266 lies in a sodium-sensitive region of the SBATs that is implicated in bile acid transport.  相似文献   

5.
To obtain information on the concentration and spectrum of bile acids in human cecal content, samples were obtained from 19 persons who had died an unnatural death from causes such as trauma, homicide, suicide, or drug overdose. Bile acid concentration was measured via an enzymatic assay for 3alpha-hydroxy bile acids; bile acid classes were determined by electrospray ionization mass spectrometry and individual bile acids by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. The 3alpha-hydroxy bile acid concentration (mumol bile acid/ml cecal content) was 0.4 +/- 0.2 mM (mean +/- SD); the total 3-hydroxy bile acid concentration was 0.6 +/- 0.3 mM. The aqueous concentration of bile acids (supernatant after centrifugation) was identical, indicating that most bile acids were in solution. By liquid chromatography mass spectrometry, bile acids were mostly in unconjugated form (90 +/- 9%, mean +/- SD); sulfated, nonamidated bile acids were 7 +/- 5%, and nonsulfated amidated bile acids (glycine or taurine conjugates) were 3 +/- 7%. By gas chromatography mass spectrometry, 10 bile acids were identified: deoxycholic (34 +/- 16%), lithocholic (26 +/- 10%), and ursodeoxycholic (6 +/- 9), as well as their primary bile acid precursors cholic (6 +/- 9%) and chenodeoxycholic acid (7 +/- 8%). In addition, 3beta-hydroxy derivatives of some or all of these bile acids were present and averaged 27 +/- 18% of total bile acids, indicating that 3beta-hydroxy bile acids are normal constituents of cecal content. In the human cecum, deconjugation and dehydroxylation of bile acids are nearly complete, resulting in most bile acids being in unconjugated form at submicellar and subsecretory concentrations.  相似文献   

6.
Cantharidin and its analogues have been of considerable interest as potent inhibitors of the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A). However, limited modifications to the parent compounds is tolerated. As part of an on-going study we have developed a new series of cantharidin analogues, the cantharimides. Inhibition studies indicate that cantharimides possessing a D- or L-histidine, are more potent inhibitors of PP1 and PP2A (PP1 IC(50)=3.22+/-0.7 microM; PP2A IC(50)=0.81+/-0.1 microM and PP1 IC(50)=2.82+/-0.6 microM; PP2A IC(50)=1.35+/-0.3 microM, respectively) than norcantharidin (PP1 IC(50)=5.31+/-0.76 microM; PP2A IC(50)=2.9+/-1.04 microM) and essentially equipotent with cantharidin (PP1 IC(50)=3.6+/-0.42 microM; PP2A IC(50)=0.36+/-0.08 microM). Cantharimides with non-polar or acidic amino acid residues are only poor inhibitors of PP1 and PP2A.  相似文献   

7.
We investigated the effect of ileal bile acid transport on the regulation of classic and alternative bile acid synthesis in cholesterol-fed rats and rabbits. Bile acid pool sizes, fecal bile acid outputs (synthesis rates), and the activities of cholesterol 7alpha-hydroxylase (classic bile acid synthesis) and cholesterol 27-hydroxylase (alternative bile acid synthesis) were related to ileal bile acid transporter expression (ileal apical sodium-dependent bile acid transporter, ASBT). Plasma cholesterol levels rose 2.1-times in rats (98 +/- 19 mg/dl) and 31-times (986 +/- 188 mg/dl) in rabbits. The bile acid pool size remained constant (55 +/- 17 mg vs. 61 +/- 18 mg) in rats but doubled (254 +/- 46 to 533 +/- 53 mg) in rabbits. ASBT protein expression did not change in rats but rose 31% (P < 0.05) in rabbits. Fecal bile acid outputs that reflected bile acid synthesis increased 2- and 2.4-times (P < 0.05) in cholesterol-fed rats and rabbits, respectively. Cholesterol 7alpha-hydroxylase activity rose 33% (24 +/- 2.4 vs. 18 +/- 1.6 pmol/mg/min, P < 0.01) and mRNA levels increased 50% (P < 0.01) in rats but decreased 68% and 79%, respectively, in cholesterol-fed rabbits. Cholesterol 27-hydroxylase activity remained unchanged in rats but rose 62% (P < 0.05) in rabbits. Classic bile acid synthesis (cholesterol 7alpha-hydroxylase) was inhibited in rabbits because an enlarged bile acid pool developed from enhanced ileal bile acid transport. In contrast, in rats, cholesterol 7alpha-hydroxylase was stimulated but the bile acid pool did not enlarge because ASBT did not change. Therefore, although bile acid synthesis was increased via different pathways in rats and rabbits, enhanced ileal bile acid transport was critical for enlarging the bile acid pool size that exerted feedback regulation on cholesterol 7alpha-hydroxylase in rabbits.  相似文献   

8.
The present study describes a novel technique for investigations of the enterohepatic circulation in the hamster with an extracorporeal bile duct that allows long-term bile collection in the free-moving animal. The animals recovered for 7 days after the operation before the external loop was cut and bile was collected over a period of 78 h. Under these optimal conditions, initial bile flow (651 +/- 89 microliters per 100 g.h-1) and the secretion rates of biliary lipids were several-fold higher than reported in an earlier study using the acute fistula hamster. Biliary cholesterol secretion amounted to 369 +/- 32 nmol per 100 g.h-1, phospholipid secretion was 2.6 +/- 0.3 mumol per 100 g.h-1, and total bile acid secretion was 31.9 +/- 2.2 mumol per 100 g.h-1. A clearcut diurnal rhythm was demonstrated for bile flow and all biliary constituents. After 9 h the depletion of the bile acid pool was complete and cholic acid synthesis derepressed 1.4-fold from a basal rate of 818 nmol per 100 g.h-1, whereas the derepression of chenodeoxycholic acid synthesis was even less pronounced. Biliary cholesterol output increased 2.2-fold, but the phospholipid secretion was constant during the full experiment. It may be concluded that the technique of an extracorporeal bile duct in the free-moving animal allows studies of bile secretion under optimal conditions. Most likely the bile secretion rates given above approach the physiological rates in the hamster.  相似文献   

9.
Intestinal handling of bile acids is age dependent; adult, but not newborn, ileum absorbs bile acids, and adult, but not weanling or newborn, distal colon secretes Cl(-) in response to bile acids. Bile acid transport involving the apical Na(+)-dependent bile acid transporter (Asbt) and lipid-binding protein (LBP) is well characterized in the ileum, but little is known about colonic bile acid transport. We investigated colonic bile acid transport and the nature of the underlying transporters and receptors. Colon from adult, weanling, and newborn rabbits was screened by semiquantitative RT-PCR for Asbt, its truncated variant t-Asbt, LBP, multidrug resistance-associated protein 3, organic solute transporter-alpha, and farnesoid X receptor. Asbt and LBP showed maximal expression in weanling and significantly less expression in adult and newborn rabbits. The ileum, but not the colon, expressed t-Asbt. Asbt, LBP, and farnesoid X receptor mRNA expression in weanling colon parallel the profile in adult ileum, a tissue designed for high bile acid absorption. To examine their functional role, transepithelial [(3)H]taurocholate transport was measured in weanling and adult colon and ileum. Under short-circuit conditions, weanling colon and ileum and adult ileum showed net bile acid absorption: 1.23 +/- 0.62, 5.53 +/- 1.20, and 11.41 +/- 3.45 nmol x cm(-2) x h(-1), respectively. However, adult colon secreted bile acids (-1.39 +/- 0.47 nmol x cm(-2) x h(-1)). We demonstrate for the first time that weanling, but not adult, distal colon shows net bile acid absorption. Thus increased expression of Asbt and LBP in weanling colon, which is associated with parallel increases in taurocholate absorption, has relevance in enterohepatic conservation of bile acids when ileal bile acid recycling is not fully developed.  相似文献   

10.
Functional contributions of residues Val-99-Ser-126 lining extracellular loop (EL) 1 of the apical sodium-dependent bile acid transporter were determined via cysteine-scanning mutagenesis, thiol modification, and in silico interpretation. Despite membrane expression for all but three constructs (S112C, Y117C, S126C), most EL1 mutants (64%) were inactivated by cysteine mutation, suggesting a functional role during sodium/bile acid co-transport. A negative charge at conserved residues Asp-120 and Asp-122 is required for transport function, whereas neutralization of charge at Asp-124 yields a functionally active transporter. D124A exerts low affinity for common bile acids except deoxycholic acid, which uniquely lacks a 7alpha-hydroxyl (OH) group. Overall, we conclude that (i) Asp-122 functions as a Na(+) sensor, binding one of two co-transported Na(+) ions, (ii) Asp-124 interacts with 7alpha-OH groups of bile acids, and (iii) apolar EL1 residues map to hydrophobic ligand pharmacophore features. Based on these data, we propose a comprehensive mechanistic model involving dynamic salt bridge pairs and hydrogen bonding involving multiple residues to describe sodium-dependent bile acid transporter-mediated bile acid and cation translocation.  相似文献   

11.
Synthesis of the coenzyme A derivatives of bile acids by the mixed anyhydride method results in a product that is contaminated by unreacted CoASH and bile acid. These compounds can be purified by Sephadex LH-20 chromatography. In each case, the purified product is free of starting materials and exhibits an equimolar ratio of bile acid, coenzyme A, and thioester bond. Millimolar extinction coefficients were calculated for these compounds as A259 nm, 15.03 +/- 0.58; A232 nm, 7.60 +/- 0.17; and A232 nm for the thioester bond, 4.12 +/- 0.17. These CoA derivatives were hydrolyzed in strongly alkaline solution, but were stable at physiologic temperature and pH. Utilization of these compounds in the enzymic preparation of taurine conjugates of bile acids indicated 94% activity. These purified CoA derivatives may be useful in studying the enzymic conjugation of bile acids.  相似文献   

12.
Human liver steroid sulphotransferase sulphates bile acids.   总被引:4,自引:0,他引:4       下载免费PDF全文
The sulphation of bile acids is an important pathway for the detoxification and elimination of bile acids during cholestatic liver disease. A dehydroepiandrosterone (DHEA) sulphotransferase has been purified from male and female human liver cytosol using DEAE-Sepharose CL-6B and adenosine 3',5'-diphosphate-agarose affinity chromatography [Falany, Vazquez & Kalb (1989) Biochem. J. 260, 641-646]. Results in the present paper show that the DHEA sulphotransferase, purified to homogeneity, is also reactive towards bile acids, including lithocholic acid and 6-hydroxylated bile acids, as well as 3-hydroxylated short-chain bile acids. The highest activity towards bile acids was observed with lithocholic acid (54.3 +/- 3.6 nmol/min per mg of protein); of the substrates tested, the lowest activity was detected with hyodeoxycholic acid (4.2 +/- 0.01 nmol/min per mg of protein). The apparent Km values for the enzyme are 1.5 +/- 0.31 microM for lithocholic acid and 4.2 +/- 0.73 microM for taurolithocholic acid. Lithocholic acid also competitively inhibits DHEA sulphation by the purified sulphotransferase (Ki 1.4 microM). No evidence was found for the formation of bile acid sulphates by sulphotransferases different from the DHEA sulphotransferase during purification work. The above results suggest that a single steroid sulphotransferase with broad specificity encompassing neutral steroids and bile acids exists in human liver.  相似文献   

13.
A method has been developed for easy sampling of duodenal bile acids. For this purpose Entero-Test was used, an encapsulated nylon thread originally used to estimate enteral parasites. This capsule is swallowed by a fasting subject and one end of the thread is taped at a corner of the month. Four hours after swallowing the thread, it is withdrawn and bile acids are eluted with buffer. The solution is applied to a Sep-Pak C18 cartridge to extract bile acids, which are subsequently analyzed by capillary gas-liquid chromatography and liquid chromatography. In vitro analyses showed that there was no preferential binding to the thread of any bile acid and that binding was pH-independent. A high correlation (r = 0.98) was found between direct analyses of bile and analyses by Entero-Test after in vitro incubation. The values obtained by the Entero-Test were similar to those of duodenal bile simultaneously collected with the normal intubation technique (r = 0.99). Duodenal bile acid composition showed a daily variation. In 11 healthy volunteers the following bile acid composition of unstimulated duodenal juice was found (mean +/- SD; %): choleate 44 +/- 12 (glycine/taurine ratio 1.8), chenodeoxycholate: 29 +/- 6 (G/T ratio 2.3); deoxycholate: 25 +/- 11 (G/T ratio 5.7), lithocholate: 1, ursodeoxycholate: less than 1. The described technique turned out to be an easily applicable method for determination of duodenal bile acids in man. This enables longitudinal studies concerning the factors that determine the bile acid pool composition and its relevance to various diseases.  相似文献   

14.
Ten healthy middle-aged women volunteered for a study to test the effect of lactulose--a synthetic, non-absorbable disaccharide--on the colonic metabolism of bile acids and on bile lipid composition. Lactulose (60 g daily in eight cases, 39 g daily in two) was taken as a proprietary syrup for six weeks, and bile was collected by duodenal intubation before and immediately after six weeks. All subjects showed a fall in the percentage of the 7-alpha-dehydroxylated bile acid deoxycholic acid (mean 28.4 +/- SEM 3.7 to 15.6 +/- 2.4; p less than 0.002) and a rise in the percentage of the primary bile acid chenodeoxycholic acid (mean 33.2 +/- 42.9 +/- 2.9; p less than 0.001). The percentage of cholic acid rose in eight subjects but mean values did not differ significantly. Bile was initially super-saturated with cholesterol in most subjects and became less saturated with cholesterol in all but one (mean saturation index 1.40 +/- 0.11 to 1.19 +/- 0.07; p less these 0.005). These data support the theory colonic bacteria contribute to cholesterol gall-stone formation.  相似文献   

15.
A direct spectrophotometric assay for determination of the serum bile acid concentration in the woodchuck (Marmota monax) has been validated. The assay relies on the conversion of 3-hydroxy bile acids to 3-oxo bile acids by 3 alpha-hydroxysteroid dehydrogenase with concomitant reduction of NAD+ to NADH. Reduction of NAD+ is coupled via a diaphorase catalyst to the formation of a diformazan dye from nitrotetrazolium blue and the diformazan product is measured spectrophotometrically at 540 nm. Interfering endogenous dehydrogenase activity present in woodchuck sera was inactivated with sodium pyruvate. Mean recovery of seven exogenous bile acids added to woodchuck sera was 102.0 +/- 2.2%. Intra-assay precision was determined with ten replicate samples giving a mean +/- standard error of the mean of 1.94 +/- 0.12 micron/L with a coefficient of variation of 3.9%. The mean serum bile acid concentration determined in 33 clinically healthy animals was 5.52 +/- 0.81 micron/L. The serum bile acid concentration increased following surgical ligation of the bile duct from 3.78 +/- 0.58 micron/L to a maximum value of 148.0 +/- 30.7 micron/L and remained increased for the 42 day study period. In woodchucks treated with carbon tetrachloride, the serum bile acid concentration peaked at 16 hours following treatment at 72.7 +/- 29.3 micron/L, and returned to pretreatment concentration within 6 days. The serum bile acid concentration therefore appears to be a sensitive biochemical test of cholestasis and hepatocellular forms of hepatic injury and of potential value in the clinical assessment of hepatic disease associated with woodchuck hepatitis virus infection.  相似文献   

16.
Tyrosine-labelled free and glycine-conjugated bile acids were synthesized and radiolabelled with 125I to high purity. The synthetic method utilized excess tyrosine methyl ester hydrochloride (1.4 equiv.) and bile acid (one equiv.) via dicyclohexylcarbodiimide (1.4 equiv.) with yields of 90-93% for tyrosine bile acid conjugates and glycyltyrosine conjugates and 56-60% yields for the glycylglycyltyrosine conjugates. All of the eight iodinated tyrosine bile acids tested were rapidly excreted into bile following intravenous injection. In bile duct-cannulated rats with ligated renal pedicles under pentobarbital anaesthesia the percentages of injected dose recovered from bile within 20 min were as follows: cholylglycine ([14C]cholylGly), 81.2 +/- 1.3%; taurocholate ([14C]taurocholate), 94.3 +/- 1.0%; cholyltyrosine (125I-cholylTyr), 85.5 +/- 3.3%; deoxycholyltyrosine (125I-deoxycholylTyr), 87.9 +/- 6.3%; chenodeoxycholyltyrosine (125I-chenodeoxycholylTyr), 93.4 +/- 2.9; cholylglycyltyrosine (125I-cholylGlyTyr), 95.7 +/- 6.7%; deoxycholylglycyltyrosine (125I-deoxylcholylGlyTyr), 92.5 +/- 3.2%; chenodeoxycholylglycyltyrosine (125I-chenodeoxycholylGlyTyr), 94.1 +/- 3.1%; cholyldiglycyltyrosine (125I-cholylGlyGlyTyr), 85.2 +/- 3.6%, and deoxycholyldiglycyltyrosine (125I-deoxycholylGlyGlyTyr), 85.5 +/- 2.7%. Values are means +/- SD. Thus the biliary excretion of 125I-chenodeoxycholylGlyTyr, 125I-chenodeoxycholylTyr, 125I-deoxycholylGlyTyr and 125I-cholylGlyTyr was similar to that of [14C]taurocholate, the major naturally occurring bile acid in the rat, and the biliary excretion of all the tyrosine conjugates was similar to or exceeded that of [14C]cholylglycine. Conjugation with tyrosine enhanced the efficiency of plasma-to-bile transport of most naturally occurring bile acids. Comparison of glycyltyrosine conjugates with glycylglycyltyrosine conjugates suggests that any additional benefit derived by elongation of the side-chain is probably negated by obscuring the 12 alpha-hydroxyl function on the steroid nucleus in the bile acid glycylglycyltyrosine conjugates.  相似文献   

17.
The agonist binding site of ATP-gated P2X receptors is distinct from other ATP-binding proteins. Mutagenesis on P2X(1) receptors of conserved residues in mammalian P2X receptors has established the paradigm that three lysine residues, as well as FT and NFR motifs, play an important role in mediating ATP action. In this study we have determined whether cysteine substitution mutations of equivalent residues in P2X(2) and P2X(4) receptors have similar effects and if these mutant receptors can be regulated by charged methanethiosulfonate (MTS) compounds. All the mutants (except the P2X(2) K69C and K71C that were expressed, but non-functional) showed a significant decrease in ATP potency, with >300-fold decreases for mutants of the conserved asparagine, arginine, and lysine residues close to the end of the extracellular loop. MTS reagents had no effect at the phenylalanine of the FT motif, in contrast, cysteine mutation of the threonine was sensitive to MTS reagents and suggested a role of this residue in ATP action. The lysine-substituted receptors were sensitive to the charge of the MTS reagent consistent with the importance of positive charge at this position for coordination of the negatively charged phosphate of ATP. At the NFR motif the asparagine and arginine residues were sensitive to MTS reagents, whereas the phenylalanine was either unaffected or showed only a small decrease. These results support a common site of ATP action at P2X receptors and suggest that non-conserved residues also play a regulatory role in agonist action.  相似文献   

18.
To study the effect of cholecystectomy on the regulation of classic and alternative bile acid syntheses, gallbladder-intact (n = 20) and cholecystectomized (n = 20) New Zealand White rabbits were fed either chow or chow with 2% cholesterol (3 g/day). After 10 days, bile fistulas were constructed in half of each rabbit group to recover and measure the bile acid pool and biliary bile acid flux. After cholesterol feeding, the bile acid pool size increased from 268 +/- 55 to 444 +/- 77 mg (P < 0.01) with a 2-fold rise in the biliary bile acid flux in intact rabbits but did not expand the bile acid pool (270 +/- 77 vs. 276 +/- 62 mg), nor did the biliary bile acid flux increase in cholecystectomized rabbits. Ileal apical sodium-dependent bile acid transporter protein increased 46% from 93 +/- 6 to 136 +/- 23 units/mg (P < 0.01) in the intact rabbits but did not change in cholecystectomized rabbits (104 +/- 14 vs. 99 +/- 19 units/mg) after cholesterol feeding. Cholesterol 7alpha-hydroxylase activity was inhibited 59% (P < 0.001) while cholesterol 27-hydroxylase activity rose 83% (P < 0.05) after cholesterol feeding in the intact rabbits but neither enzyme activity changed significantly in cholesterol-fed cholecystectomized rabbits. Fecal bile acid outputs reflecting bile acid synthesis increased significantly in the intact but not in the cholecystectomized rabbits fed cholesterol.Removal of the gallbladder prevented expansion of the bile acid pool after cholesterol feeding as seen in intact rabbits because ileal bile acid transport did not increase. As a result, cholesterol 7alpha-hydroxylase was not inhibited.  相似文献   

19.
In the chronic bile fistula rat, the administration of a bolus dose of mevinolinic acid, an inhibitor of HMG-CoA reductase, was followed by rapid down-regulation of cholesterol 7 alpha-hydroxylase activity and a decrease in bile acid synthesis. These observations suggested that either newly synthesized cholesterol or some other metabolite of mevalonate may be involved in the regulation of bile acid synthesis. In order to distinguish between these two alternatives, we carried out experiments in which cholesterol synthesis was blocked by AY9944, a compound that inhibits the conversion of 7-dehydrocholesterol to cholesterol, a last step in the cholesterol biosynthesis pathway. Rats underwent biliary diversion for 72 h at which time they were given intravenously either a bolus dose of AY9944 (1 mg/kg) or control vehicle. At 0 (pre-treatment control), 0.5, 1.5, and 3 h post bolus, livers were harvested and specific activities of cholesterol 7 alpha-hydroxylase were determined. At 1.5, 3, and 6 h post bolus, AY9944 inhibited bile acid synthesis by 19 +/- 6%, 40 +/- 4%, and 41 +/- 6%, respectively, as compared to pretreatment baseline. Cholesterol 7 alpha-hydroxylase activity determined at 0.5, 1.5, and 3 h was decreased by 44 +/- 6%, 44 +/- 2%, and 36 +/- 2%, respectively, as compared to the control value. In in vitro experiments using microsomes from livers of control bile fistula rats, the addition of AY9944 (up to 100 microM) failed to inhibit cholesterol 7 alpha-hydroxylase activity. The results of this study demonstrate that, in the chronic bile fistula rat, acute inhibition of cholesterol synthesis at either early or late steps leads to a rapid down-regulation of cholesterol 7 alpha-hydroxylase activity and decrease in bile acid synthesis.  相似文献   

20.
Two highly similar regions in the predicted first intracellular (ICL-1) and third extracellular loop (ECL-3) of the type IIa Na+/P(i) cotransporter (NaPi-IIa) have been shown previously to contain functionally important sites by applying the substituted cysteine accessibility method (SCAM). Incubation in methanethiosulfonate (MTS) reagents of mutants that contain novel cysteines in both loops led to full inhibition of cotransport activity. To elucidate further the role these regions play in defining the transport mechanism, a double mutant (A203C-S460C) was constructed with novel cysteines in each region. The effect of cysteine modification by different MTS reagents on two electrogenic transport modes (leak and cotransport) was investigated. MTSEA (2-aminoethyl MTS hydrobromide) and MTSES (MTS ethylsulfonate) led to full inhibition of cotransport and increased the leak, whereas incubation in MTSET (2-[trimethylammonium]ethyl MTS bromide) inhibited only cotransport. The behavior of other double mutants with a cysteine retained at one site and hydrophobic or hydrophilic residues substituted at the other site, indicated that most likely only Cys-460 was modifiable, but the residue at Ala-203 was critical for conferring the leak and cotransport mode behavior. Substrate interaction with the double mutant was unaffected by MTS exposure as the apparent P(i) and Na+ affinities for P(i)-induced currents and respective activation functions were unchanged after cysteine modification. This suggested that the modified site did not interfere with substrate recognition/binding, but prevents translocation of the fully loaded carrier. The time-dependency of cotransport loss and leak growth during modification of the double cysteine mutant was reciprocal, which suggested that the modified site is a kinetic codeterminant of both transport modes. The behavior is consistent with a kinetic model for NaPi-IIa that predicts mutual exclusiveness of both transport modes. Together, these findings suggest that parts of the opposing linker regions are associated with the NaPi-IIa transport pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号