首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mature human erythrocytes were tested for their ability to synthetize membrane phospholipids from simple precursors: [32P]-orthophosphate (32Pi), [U-14C] glycerol, [U-14C] glucose, [U-14C] serine, and [U-14C] choline. The incorporation of these labels into phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), lysophosphatidylcholine (lyso-PC), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2) was measured. All the phospholipids tested incorporated 32Pi, glycerol, and glucose in a time dependent manner. According to the rate of 32Pi incorporation, three groups of phospholipids could be distinguished: 1) PA, PIP2, PIP, lyso-PC; 2) PI and PS; 3) PC and PE, which incorporated 5 x 10(3), 40, and 6 nmol 32Pi/mmol phospholipid per 1 h, respectively. Moreover, [U-14C] serine and [U14C] choline were found to incorporate into phospholipids, and PS-decarboxylase activity could be measured. The possibility that the observed incorporation was due to contamination with bacteria or other blood cells could be ruled out. Our results bring evidence for de novo phospholipid synthesis of human red blood cells.  相似文献   

2.
In isolated rat hepatocytes, vasopressin evoked a large increase in the incorporation of [32P]Pi into phosphatidylinositol, accompanied by smaller increases in the incorporation of [1-14C]oleate and [U-14C]glycerol. Incorporation of these precursors into the other major phospholipids was unchanged during vasopressin treatment. Vasopressin also promoted phosphatidylinositol breakdown in hepatocytes. Half-maximum effects on phosphatidylinositol breakdown and on phosphatidylinositol labelling occurred at about 5 nM-vasopressin, a concentration at which approximately half of the hepatic vasopressin receptors are occupied but which is much greater than is needed to produce half-maximal activation of glycogen phosphorylase. Insulin did not change the incorporation of [32P]Pi into the phospholipids of hepatocytes and it had no effect on the response to vasopressin. Although the incorporation of [32P]Pi into hepatocyte lipids was decreased when cells were incubated in a Ca2+-free medium, vasopressin still provoked a substantial stimulation of phosphatidylinositol labelling under these conditions. Studies with the antagonist [1-(beta-mercapto-beta, beta-cyclopentamethylenepropionic acid),8-arginine]vasopressin indicated that the hepatic vasopressin receptors that control phosphatidylinositol metabolism are similar to those that mediate the vasopressor response in vivo. When prelabelled hepatocytes were stimulated for 5 min and then subjected to subcellular fractionation. The decrease in [3H]phosphatidylinositol content in each cell fraction with approximately in proportion to its original phosphatidylinositol content. This may be a consequence of phosphatidylinositol breakdown at a single site, followed by rapid phosphatidylinositol exchange between membranes leading to re-establishment of an equilibrium distribution.  相似文献   

3.
Connective tissue cells of liver parenchyma (perisinusoidal myofibroblasts) can be induced to express the lipocyte (Ito cell) phenotype. We have studied phospholipid synthesis and phosphate incorporation during this in vitro conversion, induced by insulin and/or indomethacin, in the established murine cell line GRX. Phospholipid synthesis, measured by [14C]acetate incorporation, was increased after a full induction of the lipocyte phenotype. The 32Pi incorporation into phospholipids was increased from the beginning of induction. Phosphatidic acid and phosphatidylinositol synthesis were increased early in the induction, whilst the increase of major constitutive phospholipids was significant only after the full lipocyte phenotype induction. The presence of unsaturated fatty acids in phospholipids was increased in lipocytes. Linoleic acid was present only in diacylglycerols and in phosphatidylinositol. Since we have shown previously that linoleic acid was not present in triacylglycerols, this result indicates the importance of future studies on activation of phosphatidylinositol cycles in induction of lipocyte phenotype in liver connective tissue cells.  相似文献   

4.
Incorporation of [32P]Pi into phosphatidic acid and phosphatidylinositol of hamster epididymal adipocytes was partially inhibited by 3-isobutyl-1-methylxanthine. This effect of 3-isobutyl-1-methylxanthine was antagonized by isopropyl-N6-phenyladenosine but not by 2',5'-dideoxyadenosine, prostaglandin E1 or clonidine. N6-Phenylisopropyladenosine did not affect incorporation of [32P]Pi into phosphatidic acid or phosphatidylinositol when 3-isobutyl-1-methylxanthine was not present. In contrast with 3-isobutyl-1-methylxanthine inhibition of [32P]Pi incorporation into phospholipids, which was blocked only by N6-phenylisopropyladenosine, accelerated lipolysis was blocked by prostaglandin E1, clonidine and 2',5'-dideoxyadenosine as well as by N6-phenylisopropyladenosine. Phospholipid labelling was also decreased in the presence of adenosine deaminase, but not in the presence of isoprenaline (isoproterenol). The stimulatory effect of N6-phenylisopropyladenosine on [32P]Pi incorporation into phospholipids in cells exposed to 3-isobutyl-1-methylxanthine was evident as soon as 3 min after addition of the adenosine analogue and maximum 10 min after its addition. As observed by others, [32P]Pi incorporation into phospholipids was increased by the alpha 1-selective agonist methoxamine. The stimulatory effect of methoxamine occurred with a time course similar to that of N6-phenylisopropyladenosine and was present at nearly equal magnitude in the absence or presence of 3-isobutyl-1-methylxanthine. The inhibitory effects of 3-isobutyl-1-methylxanthine and adenosine deaminase on phospholipid labelling are attributed to blockade of the action, or to the enzymic removal, of adenosine formed in and released from the fat-cells during their incubation. Supporting this view is the selective reversal of the actions of 3-isobutyl-1-methylxanthine and of adenosine deaminase by N6-phenylisopropyladenosine. These findings suggest an important role for endogenous adenosine in regulation of phospholipid turnover in adipocytes.  相似文献   

5.
Effect of Light on the Metabolism of Lipids in the Rat Retina   总被引:1,自引:1,他引:0  
The effect of light on the in vitro incorporation of a variety of radioactive precursors into glycerolipids was tested in isolated retinas of albino rats. There was an increase in the incorporation of [2-3H]myo-inositol, 32Pi, [2-3H]glycerol, and [methyl-3H]choline into retinal phospholipids in light compared to that in darkness. [2-3H]myo-Inositol was incorporated primarily into phosphatidylinositol. 32Pi was incorporated primarily into the phosphoinositides, although there were significant increases in the specific activities of all retinal phospholipids in light compared to those in darkness. Likewise, [2-3H]glycerol incorporation into all retinal phospholipids and diglycerides was greater in light than in the dark. There was no effect of light on the incorporation of [2-3H]ethanolamine into phosphatidylethanolamine or of [3-3H]serine into phosphatidylserine, although these phospholipids were labeled to a greater extent in light with [2-3H]glycerol. There was no effect of light on the incorporation of [3H]palmitic acid into diglycerides and phospholipids, with the exception of phosphatidylinositol. Light also had no effect on the uptake of [2-3H]glycerol, [2-3H]inositol, or [methyl-3H]choline into the retina. We conclude from these studies that light stimulates the phosphoinositide effect in the rat retina. Although some of the results are consistent with a stimulation of de novo synthesis of all lipid classes, our studies with [3H]palmitate, [2-3H]ethanolamine, and [3-3H]serine do not support this conclusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and 32Pi, the incorporation of 32Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. 32Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of 32Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using [3H]serine-labeled phospholipid. Pulse and pulse-chase experiments with L-[U-14C] serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold whereas the turnover of newly synthesized phosphatidylserine was normal. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine. These results demonstrate that exogenous phosphatidylserine can be efficiently incorporated into Chinese hamster ovary cells and utilized for membrane biogenesis, endogenous phosphatidylserine biosynthesis thereby being suppressed.  相似文献   

7.
In 1975, Cronan et al. (J. Biol. Chem. 250:5835-5840) reported that free fatty acids accumulated during glycerol starvation of an Escherichia coli glycerol auxotroph. On the basis of labeling experiments showing significant incorporation of [14C]acetate into the fatty acid fraction of glycerol-starved cells, these authors concluded that fatty acid synthesis proceeded normally in the absence of phospholipid synthesis. Since these findings might have been due to an increase in the intracellular specific activity of the [1-14C]acetyl coenzyme A pool of the glycerol-starved cells, we reexamined the effect of glycerol starvation on fatty acid synthesis. We found that (i) the incorporation of 3H2O and/or [2,3-14C]succinate into the fatty acid fraction of glycerol auxotrophs is severely reduced during starvation, (ii) the incorporation of [1-14C]acetate into the lipid fraction of an acetate-requiring glycerol auxotroph is inhibited by 95% during glycerol starvation, and (iii) the accumulation of fatty acids, as measured by microtitration, in glycerol-starved cells is less than 10% that of glycerol-supplemented cells. These results indicate that fatty acid synthesis is inhibited in the absence of phospholipid synthesis of E. coli.  相似文献   

8.
The metabolic fate of ethanol into the phospholipid pool of calf pulmonary artery endothelial cells was studied. [14C]-ethanol was incorporated into various endothelial cell phospholipids including phosphatidylethanol (PEth), which may represent a substantial fraction in microdomains of membrane phospholipids. The incorporation into phospholipids was reduced in the presence of pyrazole and cyanamide, inhibitors of ethanol metabolism. Wortmannin, the phosphatidylinositol 3-kinase inhibitor, increased [14C]-PEth formation. [3H]-acetate was also incorporated into endothelial cell phospholipids but in a different pattern. Distribution of [3H]-acetate and [14C]-ethanol into the fatty acyl moiety versus the glycerophosphoryl backbone of the phospholipids was also different. Stimulation of the endothelial cells with ATP increased [3H]-acetate incorporation into platelet-activating factor (PAF) and ethanol decreased it. Ethanol exposure increased ATP-stimulated [3H]-acetate incorporation into sphingomyelin. However, ATP had no effect on the incorporation of [14C]-ethanol into any phospholipids. The results suggest that the two precursors contribute to a separate acetate pool and that the sphingomyelin cycle may be sensitized in ethanol-treated cells. Thus, metabolic conversions of ethanol into lipids and the effect of ethanol on specific lipid mediators, e.g PAF, PEth and sphingomyelin, may be critical determinants in the altered responses of the endothelium in alcoholism.  相似文献   

9.
The addition of the Ca2+ ionophore A23187 to rabbit neutrophils stimulated [14C]arachidonic acid incorporation into phosphatidylinositol and lysosomal enzyme secretion. A significant increase in phosphatidylinositol labelling was observed after a 2 min exposure to 0.1 microM-ionophore A23187. Maximum increases in rate of labelling were obtained with 1 microM-ionophore A23187 within 1 min, declining to basal rates after 15 min. Similarly, maximum rate of enzyme release occurred during the first 2 min of exposure to ionophore and release was essentially complete by 15 min. Threshold and peak ionophore A23187 concentrations for stimulating both processes were identical. In contrast with the specificity of phosphatidylinositol labelling induced by 1 microM-ionophore A23187 in the absence of cytochalasin B, ionophore also significantly stimulated labelling of phosphatidylserine and phosphatidylethanolamine in the presence of cytochalasin B. With a threshold ionophore concentration (0.1 microM), the enhanced incorporation of arachidonate was relatively specific for phosphatidylinositol in cytochalasin-treated cells. Ionophore A23187 did not accelerate labelling of phosphatidylinositol by [14C]acetate or [14C]glycerol, indicating that ionophore A23187 does not stimulate phosphatidylinositol synthesis de novo, although it did promote [14C]palmitate and [32P]Pi incorporation into neutrophil phosphatidylinositol. However, the increase in phosphatidylinositol labelling with these latter precursors was generally slower in onset and much more modest in magnitude than that observed with arachidonic acid. These results support the hypothesis that a Ca2+-dependent phospholipase, which acts on the arachidonate moiety of phosphatidylinositol, is responsible for initiating at least certain of the membrane events coupled to the release of secretory product from the neutrophil.  相似文献   

10.
Phospholipid synthesis and exchange in isolated liver cells   总被引:14,自引:11,他引:3       下载免费PDF全文
1. The [(32)P]phosphate incorporated into the phospholipids of isolated rat hepatic cells is present in phosphatidic acid and to a smaller extent in phosphatidylinositol. 2. The ability to synthesize nitrogen-containing phospholipids is restored by adding a liver supernatant fraction, and it is suggested that the metabolic deficiency is caused by the leakage of cytoplasmic enzymes of the synthetase system from the cells. 3. Fortified cell preparations were pulse-labelled with [(32)P]phosphate, [Me-(14)C]choline, [2-(14)C]ethanolamine and [U-(14)C]inositol and the subsequent fate of the labelled microsomal and mitochondrial phospholipids followed. 4. A fall in the specific radioactivity of microsomal phospholipids and a rise in that of mitochondrial phospholipids is interpreted as providing evidence of a transfer of labelled phospholipid molecules from the synthetic site (endoplasmic reticulum) to the mitochondrial membranes in the intact cells. 5. The formation of the phospholipids of mitochondrial membranes is discussed.  相似文献   

11.
Long chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for both anabolic and catabolic pathways. We have hypothesized that each of the five ACSL isoforms partitions FA toward specific downstream pathways. Acsl1 mRNA is increased in cells under both lipogenic and oxidative conditions. To elucidate the role of ACSL1 in hepatic lipid metabolism, we overexpressed an Acsl1 adenovirus construct (Ad-Acsl1) in rat primary hepatocytes. Ad-ACSL1, located on the endoplasmic reticulum but not on mitochondria or plasma membrane, increased ACS specific activity 3.7-fold. With 100 or 750 mum [1-(14)C]oleate, Ad-Acsl1 increased oleate incorporation into diacylglycerol and phospholipids, particularly phosphatidylethanolamine and phosphatidylinositol, and decreased incorporation into cholesterol esters and secreted triacylglycerol. Ad-Acsl1 did not alter oleate incorporation into triacylglycerol, beta-oxidation products, or total amount of FA metabolized. In pulse-chase experiments to examine the effects of Ad-Acsl1 on lipid turnover, more labeled triacylglycerol and phospholipid, but less labeled diacylglycerol, remained in Ad-Acsl1 cells, suggesting that ACSL1 increased reacylation of hydrolyzed oleate derived from triacylglycerol and diacylglycerol. In addition, less hydrolyzed oleate was used for cholesterol ester synthesis and beta-oxidation. The increase in [1,2,3-(3)H]glycerol incorporation into diacylglycerol and phospholipid was similar to the increase with [(14)C]oleate labeling suggesting that ACSL1 increased de novo synthesis. Labeling Ad-Acsl1 cells with [(14)C]acetate increased triacylglycerol synthesis but did not channel endogenous FA away from cholesterol ester synthesis. Thus, consistent with the hypothesis that individual ACSLs partition FA, Ad-Acsl1 increased FA reacylation and channeled FA toward diacylglycerol and phospholipid synthesis and away from cholesterol ester synthesis.  相似文献   

12.
N Nachas  A Pinson 《FEBS letters》1992,298(2-3):301-305
In neonatal cultured cardiac myocytes under normoxic conditions, 32Pi incorporation pattern into various phospholipids, and double-labeling experiments with 32Pi and [3H]methyl choline, suggest that phosphatidylcholine and phosphatidylinositol are turned over rapidly, whereas the turnover of phosphatidylethanolamine is probably much slower. While increased levels of the corresponding lysophospholipids were not found under anoxia, release of diacylglycerol and phosphorylcholine was observed. These data strongly suggest that phospholipase C, and not phospholipase A2, is involved in phospholipid degradation in cultured cardiomyocytes under anoxic conditions.  相似文献   

13.
The effects of di(2-ethylhexyl)phthalate, a typical peroxisomal proliferator, on the activities of key enzymes in the glycerophospholipid synthetic pathway and the incorporation of lipid precursors into liver lipids in vitro were studied periodically in rats. When di(2-ethylhexyl)phthalate was fed at the 1% level to rats, glycerol-3-phosphate acyltransferase activity increased 2-3-fold in liver homogenates and microsomes in 2-4 days. The specific activity of microsomal CTP:phosphocholine cytidylyltransferase increased by 1.5-fold, whereas the cytosolic activity was depressed. The microsomal CDPcholine:diacylglycerol cholinephosphotransferase specific activity decreased, whereas the activity in the homogenates increased, suggesting the proliferation of the hepatic endoplasmic reticulum in di(2-ethylhexyl)phthalate-treated rats. The incorporation of [1(3)-3H]glycerol or [1-14C]acetate into liver phospholipids in vitro increased in 2 days and stayed at a high level up to 12 days. The present study confirmed that di(2-ethylhexyl)phthalate induced an enhancement of phospholipid synthesis in the liver. The increase in hepatic phospholipid synthesis by this drug is presumably linked to the proliferation of peroxisomes and other intracellular membranes.  相似文献   

14.
Use of the isolated perfused rat lung in studies on lung lipid metabolism   总被引:1,自引:0,他引:1  
A procedure for the use of the isolated perfused rat lung in studies on metabolic regulation has been developed. The procedure, reasonably uncomplicated, yet physiological, maintains the lung so that edema is not observed. The phospholipid content remains normal, and incorporation of [1-(14)C]-palmitate, [2-(14)C]acetate, and [U-(14)C]glucose is linear with time for a minimum of 2 hr. The incorporation of [1-(14)C]-palmitate and [2-(14)C]acetate into the total lung phospholipid fraction and into the phosphatidylcholine and phospatidylethanolamine fractions has been studied. Increasing the concentration of palmitate in the medium from 0.14 to 0.51 mm increased by 60% the incorporation of [1-(14)C]palmitate into the total lung phospholipid fraction at 2 hr. When the palmitate concentration of the medium was 0.14 mm, addition of 0.11 and 0.79 mm oleate to the medium decreased [1-(14)C]palmitate incorporation into the total lung phospholipid fraction at 2 hr by 37 and 49%, respectively. The results suggest that the incorporation of exogenous fatty acids, present in the medium perfusing the lung, into lung phospholipids may depend upon the fatty acid composition of the medium. Known specific acyltransferase activities may be responsible for the ordered incorporation of available fatty acids into lung phospholipids.  相似文献   

15.
Neutrophils respond to chemoattractants by aggregating, degranulating, remodelling of phospholipids and releasing arachidonic acid. To determine whether ligand-induced remodelling of phospholipids depends on redistribution of intracellular organelles (degranulation), we compared phospholipid remodelling of human neutrophils with that of neutrophil-derived cytoplasts. Cytoplasts, organelle-depleted vesicles of cytosol surrounded by plasmalemma, cannot degranulate. Without a stimulus, [3H]arachidonate was incorporated preferentially into phosphatidylinositol (PI) and phosphatidylcholine (PC). Exposure of cytoplasts and neutrophils prelabelled with [3H]arachidonate or [14C]glycerol to fMet-Leu-Phe (10(-7) M) induced rapid changes in distribution of label and mass of individual phospholipids: [3H]arachidonate in phosphatidic acid (PA) increased 500% (120 s), [14C]glycerol incorporation and mass of PA approached 200% of unstimulated values, and [3H]arachidonate in PI decreased continuously; these data are compatible with activity of a PI/PA cycle. However, the mass of PI in both preparations and [14C]glycerol label in intact neutrophils increased initially (5 s), suggesting net synthesis and mobilization of more than one pool of PI. Heterogeneity of PC pools was also observed: [3H]arachidonate was lost from PC immediately upon addition of stimulus, whereas mass and [14C]glycerol values increased. Thus, net phospholipid synthesis, redistribution of arachidonate and activation of the PI/PA cycle are immediate responses of the neutrophil to receptor occupancy by chemoattractants. Furthermore, the similarity in response to fMet-Leu-Phe of neutrophils and granule-free cytoplasts indicates that these processes are independent of degranulation.  相似文献   

16.
In a previous study [Waku, K. and Nakazawa, Y. (1978) Eur. J. Biochem. 88, 489-494], we observed the rapid turnover rate of the molecular species of alkylacyl glycerophosphoethanolamine (Gro-P-Etn) containing docosahexaenoic acid and the high selectivity for this molecular species of ethanolamine phosphotransferase was suggested. To clarify this point, the incorporation of [14C]ethanolamine and [14C]CDP-ethanolamine into the individual molecular species of alkenylacyl, alkylacyl and diacyl Gro-P-Etn has been determined in Ehrlich ascites tumor cells. [14C]Ethanolamine was highly incorporated into the pentaenoic + hexaenoic species of alkenylacyl, alkylacyl and diacyl Gro-P-Etn, whereas incorporation of [14C]ethanolamine into molecular species other than the pentaenoic + hexaenoic species was quite low. The selectivity of ethanolamine phosphotransferase to form the molecular species of alkylacyl and diacyl Gro-P-Etn was examined by incubation of [14C]CDP-ethanolamine and microsomes of Ehrlich ascites tumor cells. The incorporation of [14C]CDP-ethanolamine was found to occur most into the pentaenoic + hexaenoic species of both alkylacyl and diacyl Gro-P-Etn. The present results suggest that the pentaenoic + hexaenoic species are preferentially synthesized among the various kinds of molecular species of alkylacyl and diacyl Gro-P-Etn by the ethanolamine phosphotransferase in Ehrlich ascites tumor cells.  相似文献   

17.
Much of the lipid present in the ascites plasma in which Ehrlich cells grow is contained in very low density lipoproteins (VLDL). Chemical measurements indicated that triglycerides were taken up by the cells during in vitro incubation with ascites VLDL. When tracer amounts of radioactive triolein were incorporated into the ascites VLDL, the percentage uptakes of glyceryl tri[1-(14)C]oleate and triglycerides measured chemically were similar. The cells also took up [2-(3)H]glyceryl trioleate that was added to VLDL, but the percentage of available (3)H recovered in the cell lipids was 30-40% less than that of (1 4)C from glyceryl tri[1-(1 4)C]oleate. This difference was accounted for by water-soluble (3)H that accumulated in the incubation medium, suggesting that extensive hydrolysis accompanied the uptake of VLDL triglycerides. Radioactive fatty acids derived from the VLDL triglycerides were incorporated into cell phospholipids, glycerides, and free fatty acids, and they also were oxidized to CO(2). Triglyceride utilization increased as the VLDL concentration was raised. These results suggest that one function of the ascites plasma VLDL may be to supply fatty acid to the Ehrlich cells and that the availability of fatty acid to this tumor is determined in part by the ascites plasma VLDL concentration. Although Ehrlich cells incorporate almost no free glycerol into triglycerides, considerable amounts of [2-(3)H]glyceryl trioleate radioactivity were recovered in cell triglycerides. This indicates that at least some VLDL triglycerides were taken up intact. The net uptake of VLDL protein and cholesterol was very small relative to the triglyceride uptake, suggesting that intact triglycerides are transferred from the ascites VLDL to the Ehrlich cells and that hydrolysis occurs after the triglyceride is associated with the cells.  相似文献   

18.
The effects of carbachol on catecholamine secretion and [32P]Pi incorporation into phospholipids was studied in perfused bovine adrenal medulla. After a labelling period, the gland was stimulated with carbachol in the absence of 32P. Subcellular fractions were then prepared from the medulla. Carbachol roughly halved the specific radioactivities of phosphatidylinositol and phosphatidate in microsomal, chromaffin-granule, mitochondrial and plasma-membrane fractions. With Ca2+-free perfusion medium, catecholamine secretion was abolished but the phospholipid changes remained. Stimulation of secretion by KCl was not accompanied by phospholipid changes. The results are not consistent with the theory relating phosphatidylinositol hydrolysis and Ca2+ gating.  相似文献   

19.
Trypsin-dispersed cat adrenocortical cells were incubated at 37 degrees C in modified Eagle's medium containing [14C]arachidonic acid of sodium [14C]-acetate and then in non-radioactive medium. Radioactive incorporation was obtained in all phospholipids, with the greatest amount of radioactivity in phosphatidylcholine, followed by phosphatidylethanolamine, phosphatidyl-serine, and phosphatidylinositol. Concentrations of individual phospholipids generally paralleled the relative amounts of corresponding radiolabeled phospholipids, although the percentage of phosphatidylinositol was considerably lower than its radioactive counterpart, resulting in a high specific activity of this particular phospholipid. Although a potently steroidogenic concentration of corticotropin failed to enhance release of label from any particular phospholipid, analysis of specific activity showed that corticotropin stimulation was accompanied by an increased turnover of phosphatidylinositol and phosphatidic acid. These studies demonstrate that isolated cortical cells have the capacity to synthesize phospholipids from radioactive precursors. The finding that the acute effects of corticotropin are associated with changes in specific phospholipids, including phosphatidylinositol and phosphatidic acid, conforms to the general pattern observed in other secretory systems.  相似文献   

20.
It is well known that platelets readily incorporate radioactive glycerol, but not radioactive phosphate into phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vitro, thus not in accordance with de novo synthesis according to the Kennedy pathway. In attempts to understand the reason for the discrepancy, gel-filtered platelets were incubated simultaneously with [32P]Pi and [3H]glycerol, and the specific and relative radioactivities of products and intermediates were determined. Both precursors were incorporated into phosphatidylinositol (PI) with a 32P/3H ratio similar to that in glycerol 3-phosphate (in accordance with the Kennedy pathway). However, PC and PE obtained a much lower ratio. The specific 32P radioactivity in phosphorylcholine was similar to that of the gamma-phosphoryl of ATP and 650-times higher than that of PC. The specific 32P radioactivity of phosphorylethanolamine was 20-times less than that of phosphorylcholine. Both mass and 32P labelling of CDP-choline were below the detection limits. It is concluded that the incorporation of [32P]Pi into PC via phosphorylcholine is insignificant while the preferential incorporation of [3H]glycerol could be explained by exchange of diacyl[3H]glycerol in the reversible choline phosphotransferase (CDP-choline: 1,2-diacylglycerol cholinephosphotransferase) reaction. The same mechanism would explain the preferential incorporation of 3H over 32P into PE, although dilution of 32P at the phosphorylethanolamine stage would account for part of the feeble 32P incorporation. Although other mechanisms are also possible, our results clearly show that the appearance of [3H]glycerol in PC and PE is not a reliable method of monitoring de novo synthesis of these phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号