首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified three novel, rarely expressed human genes that encode new members of the lipid transfer/lipopolysaccharide binding protein (LT/LBP) gene family based on sequence homology. BPI and other members of the LT/LBP family are structurally related proteins capable of binding phospholipids and lipopolysaccharides. Real-time PCR studies indicate that BPIL1 and BPIL3 are highly expressed in hypertrophic tonsils. In situ hybridization analysis of BPIL2 shows prominent expression in skin specimens from psoriasis patients. BPIL1 and BPIL3 map to Chromosome 20q11; thus, these novel genes form a cluster with BPI and two other members of the LT/LBP gene family on the long arm of human Chr 20. BPIL2maps to Chr 22q13. The exon/intron organization of all three genes is highly conserved with that of BPI, suggesting evolution from a common ancestor.  相似文献   

2.
Protein fusions of BPI with CETP retain functions inherent to each   总被引:1,自引:0,他引:1  
Lloyd DB  Bonnette P  Thompson JF 《Biochemistry》2006,45(43):12954-12959
Cholesteryl ester transfer protein (CETP), bactericidal/permeability inducing protein (BPI), and lipopolysaccharide binding protein (LBP) are members of the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family of proteins that share a common secondary/tertiary structure. Despite this commonality of structure, very different patterns of lipid binding and protein-protein interactions are observed among the family members. BPI was previously shown to retain aspects of its own function when part of it was fused with LBP to form a chimeric protein. We have extended those observations to CETP. Some aspects of cholesteryl ester transfer function can be maintained in a chimeric protein even when over 40% of the sequence is from BPI. Further replacement of an additional 60 amino acids resulted in a complete loss of CETP function even though the chimera was able to retain some BPI-like properties. These artificial fusions retain BPI functions such as lipopolysaccharide (LPS) binding and protein-protein interactions that are not observed with native CETP. BPI-CETP chimeras are inhibited by LPS but cannot be inhibited by small molecule CETP inhibitors as effectively as native CETP. These results localize the site of LPS binding in BPI to a region no larger than the amino terminal 155 amino acids. This region can participate in some protein-protein interactions similar to intact BPI. Chimeras containing the amino terminus of CETP and the carboxy terminus of BPI did not retain any observable CETP function. These results further confirm the modular nature of the LT/LBP family of proteins but also highlight the discrete nature of their individual functions.  相似文献   

3.
The solution structure of MPN156, a ribosome-binding factor A (RBFA) protein family member from Mycoplasma pneumoniae, is presented. The structure, solved by nuclear magnetic resonance, has a type II KH fold typical of RNA binding proteins. Despite only approximately 20% sequence identity between MPN156 and another family member from Escherichia coli, the two proteins have high structural similarity. The comparison demonstrates that many of the conserved residues correspond to conserved elements in the structures. Compared to a structure based alignment, standard alignment methods based on sequence alone mispair a majority of amino acids in the two proteins. Implications of these discrepancies for sequence based structural modeling are discussed.  相似文献   

4.
PURPOSE OF REVIEW: Oxysterol binding protein was discovered in the 1980s as a cytosolic high-affinity receptor for oxysterols, but its function has remained enigmatic. Families of genes/proteins with sequence homology to oxysterol binding protein have been identified in eukaryotes from yeast to man, indicating that these proteins, denoted as oxysterol binding protein-related proteins (ORPs), serve a fundamental purpose conserved in evolution. This review discusses recent findings that provide important clues to the mode of action of these proteins. RECENT FINDINGS: The long variant of ORP1 is induced upon differentiation of monocytes to macrophages and has capacity to enhance the trans-activation potential of liver X receptors, indicating a function in macrophage lipid metabolism. Important clues to ORP function were provided by the finding that most family members carry an endoplasmic reticulum targeting motif, while the amino-terminal regions of the proteins have targeting specificities for other organelles. Extensive splice variation occurs within the gene family, suggesting that a large number of distinct protein products are encoded. Further implications were obtained for a possible role of a family member in tumor cell metastasis. SUMMARY: ORPs constitute a novel family of proteins implicated in cellular lipid metabolism and different aspects of cell regulation. The function of several family members is connected with cellular sterol metabolism, and there is evidence for a role of oxysterol binding protein in lipid transport from the endoplasmic reticulum. Recently, a model on the function of these proteins at membrane contact sites, specialized zones of communication between two different organelles, has been presented.  相似文献   

5.
Actinoporins are potent eukaryotic pore-forming toxins specific for sphingomyelin-containing membranes. They are structurally similar to members of the fungal fruit-body lectin family that bind cell-surface exposed Thomsen-Friedenreich antigen. In the present study we found a number of sequences in public databases with similarity to actinoporins. They originate from three animal and two plant phyla and can be classified in three families according to phylogenetic analysis. The sequence similarity is confined to a region from the C-terminal half of the actinoporin molecule and comprises the membrane binding site with a highly conserved P-[WYF]-D pattern. A member of this novel actinoporin-like protein family from zebrafish was cloned and expressed in Escherichia coli. It displays membrane-binding behaviour but does not have permeabilizing activity or sphingomyelin specificity, two properties typical of actinoporins. We propose that the three families of actinoporin-like proteins and the fungal fruit-body lectin family comprise a novel superfamily of membrane binding proteins, tentatively called AF domains (abbreviated from actinoporin-like proteins and fungal fruit-body lectins).  相似文献   

6.
PLUNC (palate, lung and nasal epithelium clone) proteins make up the largest branch of the BPI (bactericidal/permeability-increasing protein)/LBP (lipopolysaccharide-binding protein) family of lipid-transfer proteins. PLUNCs make up one of the most rapidly evolving mammalian protein families and exhibit low levels of sequence similarity coupled with multiple examples of species-specific gene acquisition and gene loss. Vertebrate genomes contain multiple examples of genes that do not meet our original definition of what is required to be a member of the PLUNC family, namely conservation of exon numbers/sizes, overall protein size, genomic location and the presence of a conserved disulfide bond. This suggests that evolutionary forces have continued to act on the structure of this conserved domain in what are likely to be functionally important ways.  相似文献   

7.
D F Seals  M L Parrish    S K Randall 《Plant physiology》1994,106(4):1403-1412
A 42-kD, calcium-dependent, membrane-binding protein (VCaB42) was associated with partially purified vacuole membrane. Membrane-dissociation assays indicated that VCaB42 binding to vacuole membranes was selective for calcium over other cations and that 50% of VCaB42 remained membrane bound at 61 +/- 11 nM free calcium. A 13-amino acid sequence obtained from VCaB42 showed 85% similarity with the endonexin fold, a sequence found in the annexin family of proteins that is thought to be essential for calcium and lipid binding. The greatest similarity in amino acid sequence was observed with annexin VIII (VAC-beta). The calcium-binding properties and sequence similarities suggest that VCaB42 is a member of the annexin family of calcium-dependent, membrane-binding proteins. Functional assays for VCaB42 on vacuole membrane transport processes indicated that it did not significantly affect the initial rate of calcium uptake into vacuole membrane vesicles. Because VCaB42 is vacuole localized (likely on the cytosolic surface of the vacuole) and is 50% dissociated within the physiological range of cytosolic free calcium, we hypothesize that this protein is a sensor that monitors cytosolic calcium levels and transmits that information to the vacuole.  相似文献   

8.
9.
10.
Comparisons of protein sequence via cyclic training of Hidden Markov Models (HMMs) in conjunction with alignments of three-dimensional structure, using the Combinatorial Extension (CE) algorithm, reveal two putative EF-hand metal binding domains in acetylcholinesterase. Based on sequence similarity, putative EF-hands are also predicted for the neuroligin family of cell surface proteins. These predictions are supported by experimental evidence. In the acetylcholinesterase crystal structure from Torpedo californica, the first putative EF-hand region binds the Zn2+ found in the heavy metal replacement structure. Further, the interaction of neuroligin 1 with its cognate receptor neurexin depends on Ca2+. Thus, members of the alpha,beta hydrolase fold family of proteins contain potential Ca2+ binding sites, which in some family members may be critical for heterologous cell associations.  相似文献   

11.
PALI (release 1.2) contains three-dimensional (3-D) structure-dependent sequence alignments as well as structure-based phylogenetic trees of homologous protein domains in various families. The data set of homologous protein structures has been derived by consulting the SCOP database (release 1.50) and the data set comprises 604 families of homologous proteins involving 2739 protein domain structures with each family made up of at least two members. Each member in a family has been structurally aligned with every other member in the same family (pairwise alignment) and all the members in the family are also aligned using simultaneous super-position (multiple alignment). The structural alignments are performed largely automatically, with manual interventions especially in the cases of distantly related proteins, using the program STAMP (version 4.2). Every family is also associated with two dendrograms, calculated using PHYLIP (version 3.5), one based on a structural dissimilarity metric defined for every pairwise alignment and the other based on similarity of topologically equivalent residues. These dendrograms enable easy comparison of sequence and structure-based relationships among the members in a family. Structure-based alignments with the details of structural and sequence similarities, superposed coordinate sets and dendrograms can be accessed conveniently using a web interface. The database can be queried for protein pairs with sequence or structural similarities falling within a specified range. Thus PALI forms a useful resource to help in analysing the relationship between sequence and structure variation at a given level of sequence similarity. PALI also contains over 653 'orphans' (single member families). Using the web interface involving PSI_BLAST and PHYLIP it is possible to associate the sequence of a new protein with one of the families in PALI and generate a phylogenetic tree combining the query sequence and proteins of known 3-D structure. The database with the web interfaced search and dendrogram generation tools can be accessed at http://pauling.mbu.iisc.ernet. in/ approximately pali.  相似文献   

12.
Three different classes of thiol-oxidoreductases that facilitate the formation of protein disulfide bonds have been identified. They are the Ero1 and SOX/ALR family members in eukaryotic cells, and the DsbB family members in prokaryotic cells. These enzymes transfer oxidizing potential to the proteins PDI or DsbA, which are responsible for directly introducing disulfide bonds into substrate proteins during oxidative protein folding in eukaryotes and prokaryotes, respectively. A comparison of the recent X-ray crystal structure of Ero1 with the previously solved structure of the SOX/ALR family member Erv2 reveals that, despite a lack of primary sequence homology between Ero1 and Erv2, the core catalytic domains of these two proteins share a remarkable structural similarity. Our search of the DsbB protein sequence for features found in the Ero1 and Erv2 structures leads us to propose that, in a fascinating example of structural convergence, the catalytic core of this integral membrane protein may resemble the soluble catalytic domain of Ero1 and Erv2. Our analysis of DsbB also identified two new groups of DsbB proteins that, based on sequence homology, may also possess a catalytic core similar in structure to the catalytic domains of Ero1 and Erv2.  相似文献   

13.
The GLI oncogene, discovered by virtue of its amplification in human tumors, encodes a sequence-specific DNA-binding protein containing five zinc fingers. We have now characterized one member of a family of GLI-related zinc finger genes. A previously identified fragment of GLI3 genomic DNA was used to localize GLI3 to chromosome 7p13 and to isolate cDNA clones. Sequence analysis of these clones and identification of the GLI3 protein by using polyclonal antisera demonstrated that GLI3 encodes a protein of 1,596 amino acids and an apparent molecular mass of 190 kilodaltons. Amino acid sequence comparison with GLI demonstrated seven regions of similarity (53 to 88% identity), with the zinc fingers representing the most similar region. Furthermore, when produced in vitro, the GLI3 protein bound specifically to genomic DNA fragments containing GLI-binding sites. Amino acid sequence comparison with the product of another member of the GLI family, the Drosophila segment polarity gene cubitus interruptus Dominant, revealed additional similarity that was not shared with GLI. These studies suggest that the GLI-related genes encode a family of DNA-binding proteins with related target sequence specificities. In addition, sequence similarity aside from the zinc finger region suggests that other aspects of function are shared among the members of this gene family.  相似文献   

14.

Background

The major birch pollen allergen, Bet v 1, is a member of the ubiquitous PR-10 family of plant pathogenesis-related proteins. In recent years, a number of diverse plant proteins with low sequence similarity to Bet v 1 was identified. In addition, determination of the Bet v 1 structure revealed the existence of a large superfamily of structurally related proteins. In this study, we aimed to identify and classify all Bet v 1-related structures from the Protein Data Bank and all Bet v 1-related sequences from the Uniprot database.

Results

Structural comparisons of representative members of already known protein families structurally related to Bet v 1 with all entries of the Protein Data Bank yielded 47 structures with non-identical sequences. They were classified into eleven families, five of which were newly identified and not included in the Structural Classification of Proteins database release 1.71. The taxonomic distribution of these families extracted from the Pfam protein family database showed that members of the polyketide cyclase family and the activator of Hsp90 ATPase homologue 1 family were distributed among all three superkingdoms, while members of some bacterial families were confined to a small number of species. Comparison of ligand binding activities of Bet v 1-like superfamily members revealed that their functions were related to binding and metabolism of large, hydrophobic compounds such as lipids, hormones, and antibiotics. Phylogenetic relationships within the Bet v 1 family, defined as the group of proteins with significant sequence similarity to Bet v 1, were determined by aligning 264 Bet v 1-related sequences. A distance-based phylogenetic tree yielded a classification into 11 subfamilies, nine exclusively containing plant sequences and two subfamilies of bacterial proteins. Plant sequences included the pathogenesis-related proteins 10, the major latex proteins/ripening-related proteins subfamily, and polyketide cyclase-like sequences.

Conclusion

The ubiquitous distribution of Bet v 1-related proteins among all superkingdoms suggests that a Bet v 1-like protein was already present in the last universal common ancestor. During evolution, this protein diversified into numerous families with low sequence similarity but with a common fold that succeeded as a versatile scaffold for binding of bulky ligands.  相似文献   

15.
The database of Phylogeny and ALIgnment of homologous protein structures (PALI) contains three-dimensional (3-D) structure-dependent sequence alignments as well as structure-based phylogenetic trees of protein domains in various families. The latest updated version (Release 2.1) comprises of 844 families of homologous proteins involving 3863 protein domain structures with each of these families having at least two members. Each member in a family has been structurally aligned with every other member in the same family using two proteins at a time. In addition, an alignment of multiple structures has also been performed using all the members in a family. Every family with at least three members is associated with two dendrograms, one based on a structural dissimilarity metric and the other based on similarity of topologically equivalenced residues for every pairwise alignment. Apart from these multi-member families, there are 817 single member families in the updated version of PALI. A new feature in the current release of PALI is the integration, with 3-D structural families, of sequences of homologues from the sequence databases. Alignments between homologous proteins of known 3-D structure and those without an experimentally derived structure are also provided for every family in the enhanced version of PALI. The database with several web interfaced utilities can be accessed at: http://pauling.mbu.iisc.ernet.in/~pali.  相似文献   

16.
Oxysterol-binding proteins (OSBPs) are a family of eukaryotic intracellular lipid receptors. Mammalian OSBP1 binds oxygenated derivatives of cholesterol and mediates sterol and phospholipid synthesis through as yet poorly undefined mechanisms. The precise cellular roles for the remaining members of the oxysterol-binding protein family remain to be elucidated. In yeast, a family of OSBPs has been identified based on primary sequence similarity to the ligand binding domain of mammalian OSBP1. Yeast Kes1p, an oxysterol-binding protein family member that consists of only the ligand binding domain, has been demonstrated to regulate the Sec14p pathway for Golgi-derived vesicle transport. Specifically, inactivation of the KES1 gene resulted in the ability of yeast to survive in the absence of Sec14p, a phosphatidylinositol/phosphatidylcholine transfer protein that is normally required for cell viability due to its essential requirement in transporting vesicles from the Golgi. We cloned the two human members of the OSBP family, ORP1 and ORP2, with the highest degree of similarity to yeast Kes1p. We expressed ORP1 and ORP2 in yeast lacking Sec14p and Kes1p function and found that ORP1 complemented Kes1p function with respect to cell growth and Golgi vesicle transport, whereas ORP2 was unable to do so. Phenotypes associated with overexpression of ORP2 in yeast were a dramatic decrease in cell growth and a block in Golgi-derived vesicle transport distinct from that of ORP1. Purification of ORP1 and ORP2 for ligand binding studies demonstrated ORP1 and ORP2 did not bind 25-hydroxycholesterol but instead bound phospholipids with both proteins exhibiting strong binding to phosphatidic acid and weak binding to phosphatidylinositol 3-phosphate. In Chinese hamster ovary cells, ORP1 localized to a cytosolic location, whereas ORP2 was associated with the Golgi apparatus, consistent with our vesicle transport studies that indicated ORP1 and ORP2 function at different steps in the regulation of vesicle transport.  相似文献   

17.
18.
We have extended the resolution of the crystal structure of human bactericidal/permeability-increasing protein (BPI) to 1.7 A. BPI has two domains with the same fold, but with little sequence similarity. To understand the similarity in structure of the two domains, we compare the corresponding residue positions in the two domains by the method of 3D-1D profiles. A 3D-1D profile is a string formed by assigning each position in the 3D structure to one of 18 environment classes. The environment classes are defined by the local secondary structure, the area of the residue which is buried from solvent, and the fraction of the area buried by polar atoms. A structural alignment between the two BPI domains was used to compare the 3D-1D environments of structurally equivalent positions. Greater than 31% of the aligned positions have conserved 3D-1D environments, but only 13% have conserved residue identities. Analysis of the 3D-1D environmentally conserved positions helps to identify pairs of residues likely to be important in conserving the fold, regardless of the residue similarity. We find examples of 3D-1D environmentally conserved positions with dissimilar residues which nevertheless play similar structural roles. To generalize our findings, we analyzed four other proteins with similar structures yet dissimilar sequences. Together, these examples show that aligned pairs of dissimilar residues often share similar structural roles, stabilizing dissimilar sequences in the same fold.  相似文献   

19.
Crystal structure of a phospholipase D family member   总被引:7,自引:0,他引:7  
The first crystal structure of a phospholipase D (PLD) family member has been determined at 2.0 A resolution. The PLD superfamily is defined by a common sequence motif, HxK(x)4D(x)6GSxN, and includes enzymes involved in signal transduction, lipid biosynthesis, endonucleases and open reading frames in pathogenic viruses and bacteria. The crystal structure suggests that residues from two sequence motifs form a single active site. A histidine residue from one motif acts as a nucleophile in the catalytic mechanism, forming a phosphoenzyme intermediate, whereas a histidine residue from the other motif appears to function as a general acid in the cleavage of the phosphodiester bond. The structure suggests that the conserved lysine residues are involved in phosphate binding. Large-scale genomic sequencing revealed that there are many PLD family members. Our results suggest that all of these proteins may possess a common structure and catalytic mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号