首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe several recent advances in our understanding and treatment of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) including the use of cytogenetics to classify these diseases and to identify therapies that are specific for the abnormalities. Cell lines have provided readily available and very relevant models to understand these diseases. The two clear successes include the use of retinoic acid for acute promyelocytic leukemia and tyrosine kinase inhibitors (e.g., imatinib) for chronic myelogenous leukemia. Very recent results suggest a particular activity of lenalidomide, an analogue of thalidomide, in MDS patients with deletions of the long arm of chromosome 5 (so-called 5q minus syndrome), and notable activity of azanucleoside DNA demethylating agents in MDS with loss of chromosome 7. However, for the vast majority of cytogenetic abnormalities found in AML/MDS, no specific therapies have been identified. The use of a variety of molecular biology techniques have identified a large number of genomic abnormalities; the challenge of the next several decades is to identify specific therapies for these molecular defects.  相似文献   

2.
Leukaemia is a bone marrow cancer occurring in acute and chronic subtypes. Acute leukaemia is a rapidly fatal cancer potentially causing death within a few weeks, if untreated. Leukaemia arises as a result of disruption to haematopoietic precursors, caused either by acquired gene fusions, gene mutations or inappropriate expression of the relevant oncogenes. Current treatment options have made significant progress, but the 5 year survival for acute leukaemia remains under 10% in elderly patients, and less than 50% for some types of acute leukaemia in younger adults. For chronic leukaemias longer survival is generally expected and for chronic myeloid leukaemia patients on tyrosine kinase inhibitors the median survival is not yet reached and is expected to exceed 10 years. Chemotherapy and haematopoietic stem cell transplantation (HSCT) for acute leukaemia provide the mainstay of therapy for patients under 65 and both carry significant morbidity and mortality. Alternative and superior therapeutic strategies for acute leukaemias are urgently required. Recent molecular-based knowledge of recurring chromosome rearrangements, in particular translocations and inversions, has resulted in significant advances in understanding the molecular pathogenesis of leukaemia. Identification of a number of unique fusion genes has facilitated the development of highly specific small interfering RNAs (siRNA). Although delivery of siRNA using multifunctional nanoparticles has been investigated to treat solid cancers, the application of this approach to blood cancers is at an early stage. This review describes current treatments for leukaemia and highlights the potential of leukaemic fusion genes as therapeutic targets for RNA interference (RNAi). In addition, the design of biomimetic nanoparticles which are capable of responding to the physiological environment of leukaemia and their potential to advance RNAi therapeutics to the clinic will be critically evaluated.  相似文献   

3.
Blastic cells of acute lymphoid, acute myeloid and acute myelomonocytic leukaemias were studied by means of indirect immunofluorencence to provide more information on the presence of satellite nucleoli in blood cells. According to results, satellite nucleoli were found in a small but constant number of blastic cells disregarding their type and type of acute leukaemia. Satellite nucleoli exhibited a positive immunoreaction for fibrillarin and protein B23 which are characteristic for main nucleolar components. These findings suggest that satellite nucleoli contain fibrillar centers as well as dense fibrillar and granular components or at least proteins characteristic for these nucleolar components. Similarly as in normal and pathological cells of completely different origin, in blastic cells of acute leukaemias the number of satellite nucleoli per cells ranged between 1 and 2.  相似文献   

4.
Using monoclonal antibodies specific for myelomonocytic cells, 40 non-lymphoblastic leukaemias were analysed applying immunostaining to cytospin preparations. Based on the reactivity patterns six groups of acute non-lymphoblastic leukaemias could be determined, mirroring the bimodal differentiation pathway of myelomonocytic cells. Comparative enzyme cytochemical analysis did not render a clear cut correlation and discrimination of the immunocytochemically defined groups. It is concluded that only the application of a broad panel of immunocytochemical and enzyme cytochemical methods allow a sound subdivision and diagnosis of acute non-lymphoblastic leukaemias.  相似文献   

5.
Major histocompatibility complex (MHC) class II molecules have been considered as a good target molecule for use in immunotherapy, because of the high expression in some lymphoma and leukaemia cells and, also, because of their restricted expression on human cells (monocytes, dendritic, B lymphocytes, thymic epithelial cells, and some cytokine-activated cells, such as T lymphocytes). We have obtained a human IgM monoclonal antibody directed against human leukocyte antigen (HLA) class II molecules, using transgenic mice carrying human Ig genes. The antibody BH1 (IgM/κ isotype) recognises HLA-class II on the surface of tumour cells from patients suffering from haematological malignancies, such as chronic and acute lymphocytic leukaemias, non-Hodgkin lymphomas and myeloid leukaemias. Interestingly, functional studies revealed that BH1 mAb recognises and kills very efficiently tumour cells from several leukaemia patients in the presence of human serum as a source of complement. These results suggest that this human IgM monoclonal antibody against HLA-class II could be considered as a potential agent in the treatment of several malignancies. Belén Díaz, Irene Sanjuan and Susana Magadán share authorship; Francisco Gambón and áfrica González–Fernández share leadership.  相似文献   

6.
Prostate cancer (PCa) is one of the most common malignancies among men. Despite advancement in technology and medicine over past decades, late diagnosis remains a critical milestone in effective treatment. Therefore, it is necessary to identify novel and reliable biomarkers which are specifically sensitive and specific for prognosis and prediction of clinical outcomes. MicroRNAs (miRNAs) play important roles in posttranslational regulations of genes. Circulating and exosomal miRNAs can be applied as useful diagnostic markers for a different type of malignancies, including PCa. Herein, we summarized various roles of miRNAs (diagnostic, therapeutic, and prognostic) in PCa. Moreover, we highlighted exosomal miRNAs as a new candidate in diagnosis and monitoring response to therapy in patients with PCa.  相似文献   

7.
Multidrug resistance (MDR) genes in haematological malignancies   总被引:1,自引:0,他引:1  
The emergence of drug resistant cells is one of the main obstacles for successful chemotherapeutic treatment of haematological malignancies. Most patients initially respond to chemotherapy at the time of first clinical admission, but often relapse and become refractory to further treatment not only to the drugs used in the first treatment but also to a variety of other drugs. Laboratory investigations have now provided a cellular basis for this clinical observation of multidrug resistance (MDR). Expression of a glycoprotein (referred to as P-glycoprotein) in the membrane of cells made resistantin vitro to naturally occurring anticancer agents like anthracyclines, Vinca alkaloids and epipodophyllotoxins, has been shown to be responsible for the so-called classical MDR phenotype. P-glycoprotein functions as an ATP-dependent, unidirectional drug efflux pump with a broad substrate specificity, that effectively maintains the intracellular cytotoxic drug concentrations under a non-cytotoxic threshold value. Extensive clinical studies have shown that P-glycoprotein is expressed on virtually all types of haematological malignancies, including acute and chronic leukaemias, multiple myelomas and malignant lymphomas. Since in model systems for P-glycoprotein-mediated MDR, drug resistance may be circumvented by the addition of non-cytotoxic agents that can inhibit the outward drug pump, clinical trials have been initiated to determine if such an approach will be feasible in a clinical situation. Preliminary results suggest that some haematological malignancies, among which are acute myelocytic leukaemia, multiple myeloma and non-Hodgkin's lymphoma, might benefit from the simultaneous administration of cytotoxic drugs and P-glycoprotein inhibitors. However, randomised clinical trials are needed to evaluate the use of such resistance modifiers in the clinic.Abbreviations ALL acute lymphocytic leukaemia - AML acute myelocytic leukaemia - BM bone marrow - CAT chloramphenicol acetyltransferase - CLL chronic lymphocytic leukaemia - CML chronic myelocytic leukaemia - CR complete remission - HCL hairy cell leukaemia - MDR multidrug resistance - MDS myelodysplastic syndrome - MM multiple myeloma - MoAb monoclonal antibody - NHL non-Hodgkin's lymphoma - PB peripheral blood - PCR polymerase chain reaction - PLL prolymphocytic leukaemia - RMA resistance modifying agent - VAD vincristine, doxorubicin, dexamethasone  相似文献   

8.
Tyrosine kinase inhibitors (TKIs) have been in use as cancer therapeutics for nearly a decade, and their utility in targeting specific malignancies with defined genetic lesions has proven to be remarkably effective. Recent efforts to characterize the spectrum of genetic lesions found in non-small cell lung carcinoma (NSCLC) have provided important insights into the molecular basis of this disease and have also revealed a wide array of tyrosine kinases that might be effectively targeted for rationally designed therapies. The findings of these studies, however, also provide a cautionary tale about the limitations of single-agent therapies, which fail to account for the genetic heterogeneity and pathway redundancy that characterize advanced NSCLC. Emergence of drug resistance mechanisms to specific TKIs, such as gefitinib and erlotinib, suggests that more sophisticated chemotherapeutic paradigms that target multiple pathways at the same time will be required to effectively treat this disease.  相似文献   

9.
Despite improved molecular characterization of malignancies and development of targeted therapies, acute leukemia is not curable and few patients survive more than 10 years after diagnosis. Recently, combinations of different therapeutic strategies (based on mechanisms of apoptosis, differentiation and cytotoxicity) have significantly increased survival. To further improve outcome, we studied the potential efficacy of boosting the patient's immune response using specific immunotherapy. In an animal model of acute promyelocytic leukemia, we developed a DNA-based vaccine by fusing the human promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) oncogene to tetanus fragment C (FrC) sequences. We show for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and when combined with all-trans retinoic acid (ATRA). The survival advantage is concomitant with time-dependent antibody production and an increase in interferon-gamma (IFN-gamma). We also show that ATRA therapy on its own triggers an immune response in this model. When DNA vaccination and conventional ATRA therapy are combined, they induce protective immune responses against leukemia progression in mice and may provide a new approach to improve clinical outcome in human leukemia.  相似文献   

10.
Cancer stem cells(CSC) are thought to be malignant cells that have the capacity to initiate and maintain tumor growth and survival. Studies have described CSC in various gastrointestinal neoplasms such as colon, pancreas and liver and gastroesophageal tumors. The mechanism by which CSC develop remains unclear. Several studies have explored the role of dysregulation of the Wnt/β-catenin, transformation growth factor-beta and hedhog pathways in generation of CSC. In this review, we discuss the various molecular abnormalities that may be related to formation of CSC in gastrointestinal malignancies, strategies to identify CSC and therapeutic strategies that are based on these concepts. Identification and targeting CSC is an intriguing area and may provide a new therapeutic option for patients with cancer including gastrointestinal malignancies. Although great progress has been made, many issues need to be addressed. Precise targeting of CSC will require precise isolation and characterization of those cells. This field is also evolving but further research is needed to identify markers that are specific for CSC.Although the application of this field has not entered the clinic yet, there continues to be significant optimism about its potential utility in overcoming cancer resistance and curing patients with cancer.  相似文献   

11.
12.
Inflammatory markers and coronary heart disease   总被引:15,自引:0,他引:15  
PURPOSE OF REVIEW: Despite changes in lifestyle and the use of effective pharmacologic interventions to lower cholesterol levels, coronary heart disease remains the major cause of morbidity and mortality in the developed world. Cholesterol screening fails to identify almost 50% of those individuals who will present with acute coronary syndromes. Recent evidence from laboratory and prospective clinical studies demonstrates that atherosclerosis is not simply a disease of lipid deposition, but rather is an inflammatory process with highly specific cellular and molecular responses. The clinical utility of inflammatory markers has been examined in a variety of atherothrombotic diseases. Because C-reactive protein is highly stable in stored frozen samples, and automated and robust analytical systems for its measurement are available, it has become the most widely examined inflammatory marker. RECENT FINDINGS: C-reactive protein has consistently been shown to be a useful prognostic indicator in acute coronary syndromes and is a strong predictor of future coronary events in apparently healthy individuals. In addition, C-reactive protein can identify individuals with normal lipid levels who are at increased risk for future coronary events. Because drugs such as aspirin and statins reduce inflammatory risk, C-reactive protein has the potential to guide the use of these therapies in high-risk individuals for primary prevention. SUMMARY: C-reactive protein may have a role in global risk assessment for primary prevention and in targeting those patients who will benefit from anti-inflammatory therapies. In addition, it may also be a good prognostic indicator in patients with acute coronary syndromes.  相似文献   

13.
High percentage of neoplastic cells in S, G2 and M phases of cell cycle is unfavourable prognostic sign in human haematological malignancies. In chronic leukaemias (CML and CLL) it is true for peripheral blood leukaemic cells, in non-Hodgkin lymphomas--for lymph node cells, in multiple myeloma--for bone marrow plasma cells. In acute leukaemia results are controversial: some authors found a correlation between proliferation parameters of bone marrow blast cells while others did not. These parameters correlate positively with the rate of complete remission and negatively with its duration. It is concluded that proliferation parameters of neoplastic cells may be used for individual prognosis in patients with haematological tumours especially in combination with other biological and clinical prognostic markers.  相似文献   

14.
Granulopoietic activity (GA) in vivo and colony stimulating factor (CSF) in vitro were measured in sera of patients with acute and chronic myeloid leukaemia, chronic lymphatic leukaemia and Hodgkin's disease. Before testing sera were dialysed for removing unspecific lipoproteid inhibitors of CSF. We have found a lower activity of CSF in these diseases than in the control group. GA was even below zero stimulation especially in chronic leukaemias. This confirms the presence of inhibitory effect of the tested sera on granulopoiesis in vivo and indicated that GA tested in vivo may be more favourable for the prognosis of leukaemias.  相似文献   

15.
We have constructed a complementary DNA (cDNA) library representing expressed sequences of the white blood cells from a patient with chronic granulocytic leukaemia. The library was screened by colony hybridization of 32P-labelled cDNAs synthesized from the polyadenylated RNAs of the white blood cells from patients with chronic granulocytic or chronic lymphocytic leukaemia. The autoradiographic patterns were compared and 70 recombinants were selected to comprise a panel which distinguished between these two types of leukaemia. Hybridization of this panel with complementary DNAs transcribed from the polyadenylated RNAs of a variety of normal and neoplastic leucocyte populations showed that the RNA sequences in high abundance in leucocytes from chronic granulocytic leukaemias differ quite radically from those in other leucocytes. The patterns of hybridization seen when this panel was challenged with cDNAs representing the RNAs of normal and leukaemic leucocyte populations were sufficiently different to distinguish clearly the peripheral blood leucocytes of chronic granulocytic leukaemias from other populations of white blood cells, both normal and leukaemic. We suggest that this approach might provide additional markers useful in the classification of the acute leukaemias, especially the undifferentiated leukaemias whose identification by conventional methods is uncertain.  相似文献   

16.
The retinoids are compounds structurally related to vitamin A. The most extensively studied agents in cancer medicine include all-trans-retinoic acid, 9-cis-retinoic acid, and 13-cis-retinoic acid. In addition to several described immune regulatory functions, these agents may exert their antineoplastic effects through the regulation of tumor suppressor genes such as RAR-beta2. The survival benefit provided to patients with acute promyelocytic leukemia (APL) after induction therapy with all-trans RA and the responses experienced by patients with cutaneous lesions from Kaposi's sarcoma and cutaneous T cell lymphoma treated with 9-cis RA and a selective rexinoid--bexarotene--respectively, led to their approval by the Food and Drug Administration during the last decade. As chemopreventive agents, retinoids have proven to effectively regress laryngeal papillomatosis and oral leukoplakia lesions. The ability of 13-cis-RA to prevent second primary malignancies in patients with carcinoma of the head and neck has also been demonstrated. Unfortunately, this intervention did not affect the primary tumor recurrence rates. The toxicity and efficacy of retinoids administered in combination with other biological and cytotoxic agents have also been explored in patients with renal cell carcinoma, breast cancer, myelodysplasia, prostate, cervix, and other malignancies with a broad range of reported responses. Further characterization of the molecular processes modulated by these agents will serve to better define their role in the prevention and treatment of human cancer and to tailor specific targeted therapies in combination with other compounds. Newer and more selective retinoids and rexinoids are completing phase I and phase II studies and hold promising.  相似文献   

17.
18.
Summary Twenty-two human leukaemias, comprising acute phase leucocytes from 13 acute myeloid and nine lymphoid leukaemias, were tested for susceptibility to spontaneous cell-mediated cytotoxicity (CMC) by untreated lymphocytes and lymphocytes treated for 18 h with 250 IU lymphoblastoid (Namalva) interferon (IFN-). IFN-amplified killing (IAK) by lymphocytes from 24 normal lymphocyte donors was checked on the K562 erythroleukaemia cell line, for comparison with IAK on fresh leukaemias. Nine leukaemias were tested with lymphocytes from three donors, nine with lymphocytes from six donors, three with lymphocytes from nine donors, and one with lymphocytes from 11 donors. Some degree of susceptibility to IAK was found in five acute myeloid and five lymphoid leukaemias, which was markedly dependent upon the source of the effector lymphocytes and did not correlate with the degree of IAK on K562. The 12 other leukaemias were virtually resistant to IAK. The results emphasize the variability in the capacity of IFN-treated lymphocytes to lyse leukaemias that have not been adapted to tissue culture. The basis of effector recognition of cell line and fresh tumour targets is discussed.  相似文献   

19.
Pancreatic cancer has the worst prognosis of any major malignancy, with an annual death rate that approximates the annual incidence rate. Delayed diagnosis, relative chemotherapy and radiation resistance and an intrinsic biologic aggressiveness all contribute to the abysmal prognosis associated with pancreatic cancer. Answers to the frustrating effort to find effective therapies for pancreatic cancer may be gained through a renewed perspective on tumorigenesis as a process governed by a select population of cells, termed cancer stem cells (CSCs). Cancer stem cells, like their normal counterparts, have the properties of self-renewal and multilineage differentiation and possess inherently heightened DNA damage response and repair mechanisms that make them difficult to eradicate. Initially discovered in leukemias, researchers have identified CSCs in several solid-organ malignancies including breast, brain, prostate, and colon cancers. We have recently identified a CSC population in human pancreatic cancers. These pancreatic CSC represent 0.5% to 1.0% of all pancreatic cancer cells and express the cell surface markers CD44, CD24, and epithelial-specific antigen. Pancreatic CSCs have been shown to be resistant to standard chemotherapy and radiation, and devising specific therapies to target this distinct cell population is likely needed to identify effective therapies to treat this dismal disease.  相似文献   

20.
Strategies in cancer vaccines development   总被引:1,自引:0,他引:1  
The recent definition of tumour-specific immunity in cancer patients and the identification of tumour-associated antigens have generated renewed enthusiasm for the application of immune-based therapies for the treatment of malignancies. Recent developments in cancer vaccines have also been based on an improved understanding of the cellular interactions required to induce a specific anti-tumour immune response. Consequently, a number of cancer vaccines have entered clinical trials. Targeting broad-spectrum tumour-associated antigens has emerged as a strategy to lower the risk of tumour escape due to the loss of specific nominal antigen. Amongst the most challenging of tumour-associated antigens to which to target in active specific immunotherapy applications are carbohydrate antigens. As carbohydrates are intrinsically T-cell-independent antigens, more novel approaches are perhaps needed to drive specific-T-cell-dependent immune responses to carbohydrate antigens. In this context peptide mimetics of core structures of tumour-associated carbohydrate antigens might be developed to augment immune responses to these broad-spectrum antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号