首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.
  • 1 We studied within-tree variation in leaf quality of the mountain birch, Betula pubescens ssp. tortuosa, for larvae of the autumnal moth, Epirrita autumnata.
  • 2 The purpose of the study was to determine the possible occurrence of systematic differences in larval growth on short shoot leaves (i.e. leaves of the same age): among leaves facing in different compass directions, between leaves of lower and upper branches, among leaves on different positions within a branch and among leaves of different sizes within a short shoot. We also measured larval growth between short shoot and long shoot leaves (i.e. between leaves of different age).
  • 3 The larvae grew best on leaves on the north side of trees and most poorly on south side leaves, the east and west sides being intermediate. Leaves from the upper branches supported larval growth better than leaves from the lower ones. The larvae grew better on the smallest leaf of each short shoot and were able to utilize it more efficiently than the two larger leaves. Short shoot leaves from the basal and middle parts of the upper branches of the trees were of better quality for the larvae than short shoot leaves from the tip part of the branches. The larval growth rate did not differ between short shoot and long shoot leaves. In general, within-tree variation in the larval growth rate was lower than variation among different trees.
  • 4 Damage to leaves can decrease leaf quality for herbivores in the same year (rapidly inducible responses) or the following year(s) (delayed inducible responses). Our results show that systematic within-tree variation in larval growth can be as great as the effects of rapidly inducible responses and that variation among individual trees can be as great as the mean effects of delayed inducible responses.
  相似文献   

2.
Wound-induced oxidative responses in mountain birch leaves   总被引:5,自引:0,他引:5  
AIMS: The aim of the study was to examine oxidative responses in subarctic mountain birch, Betula pubescens subsp. czerepanovii, induced by herbivory and manual wounding. METHODS: Herbivory-induced changes in polyphenoloxidase, peroxidase and catalase activities in birch leaves were determined. A cytochemical dye, 3,3-diaminobenzidine, was used for the in situ and in vivo detection of H2O2 accumulation as a response to herbivory and wounding. To localize peroxidase activity in leaves, 10 mm H2O2 was applied to the dye reagent. KEY RESULTS: Feeding by autumnal moth, Epirrita autumnata, larvae caused an induction in polyphenoloxidase and peroxidase activities within 24 h, and a concomitant decrease in the activity of antioxidative catalases in wounded leaves. Wounding also induced H2O2 accumulation, which may have both direct and indirect defensive properties against herbivores. Wound sites and guard cells showed a high level of peroxidase activity, which may efficiently restrict invasion by micro-organisms. CONCLUSION: Birch oxidases together with their substrates may form an important front line in defence against herbivores and pathogens.  相似文献   

3.
We studied the effects of epiphytic and endophytic phyllosphere fungi and pathogenic birch rust fungus infection of mountain birch Betula pubescens ssp czerepanovit trees on the larval performance of leaf beetle Phratora potaris We assessed the effects of epiphytic fungi by growing larvae on leaves from trees with manipulated fungal densities We also monitored larval perfonnance and endophytic fungal densities among tree groups classified by herbivory or rust fungus densities The differences in expenmentally manipulated epiphytic fungal densities did not affect larval relative growth rates (RGR) of the species, instead we found significant tree effects Phratora polaris RGR was higher on trees with high level of herbivory than on trees with low herbivory, nevertheless, endophyte densities between these groupings did not differ In the rust fungus expenment, P polarts performance was lowest on trees with low infection compared to no and high infection trees We also did not find correlations among tree-specific endophyte densities and P polaris performance on high and low herbivory trees and trees classified by rust fungus infection Although antagonism among fungi and induction of tree defences cannot be excluded, we suggest that epiphytic and endophytic fungi of mountain birch have negligible effects on P polaris larval performance under natural conditions, probably due to mountain birch variability and a loose ecological connection between mountain birch and its epi- and endophytes Mountain birch and pathogenic birch rust have a more tightly linked relationship, which may also affect insect herbivores Still, leaf properties may play an important role and the effects will depend on the relative timing of the rust infection, herbivore development and changes in leaf quality  相似文献   

4.
We explored Hamilton and Brown's autumn signalling hypothesis in mountain birch (Betula pubescens). As predicted by the hypothesis, early autumn colour change (i.e. high degree of autumn colouration in September) was negatively correlated with insect damage the following season. Furthermore, as expected, indices of physiological stress (i.e. leaf fluctuating asymmetry) and reproductive investment (i.e. catkin production) were positively correlated with insect damage the following season. Indirectly, we also found support for the idea that the proposed handicap signal (i.e. early autumn senescence) might be associated with an honesty ensuring cost in terms of lost primary production. Further work is, however, required to determine whether the link between autumn colours and insect damage observed in this study is causal.  相似文献   

5.
Summary The effect of leaf damage simulating the feeding of early season insect herbivore species, e.g. Epirrita autumnata, to mountain birch, Betula pubescens ssp. tortuosa, on the performance of insect larvae was studied with eleven leaf-chewing sawfly species. I found variation in the results that was due to short- and long-term inducible responses and to the phenology of herbivore species. In general, early and mid-season species were more strongly affected by induced reactions than late-season species. This finding is in accordance with earlier results but I could show that the persistance of induced reactions rather than the influence of timing of damage is responsible for the result. The growth of the larvae of mid-season sawfly species was affected by both short- and long-term induced reactions. This result shows that early season species may escape short-term induced reactions of mountain birch in current year but may not avoid long-term effects. It is supposed that seasonal deterioration of leaf quality either masks the effects of induced defences or late-season species are better adapted to low-quality leaves. Some species show variation in their response to induced defence in different years. This may be due to yearly differences in induced reactions as well as to species-specific responses. Induced defence reactions may play a role in competitive interactions between herbivore species in leaf-chewing guild of mountain birch.  相似文献   

6.
1. Population dynamics and interactions that vary over a species' range are of particular importance in the context of latitudinal clines in biological diversity. Winter moth (Operophtera brumata) and autumnal moth (Epirrita autumnata) are two species of eruptive geometrids that vary widely in outbreak tendency over their range, which generally increases from south to north and with elevation. 2. The predation pressure on geometrid larvae and pupae over an elevational gradient was tested. The effects of background larval density and bird occupancy of monitoring nest boxes on predation rates were also tested. Predation on larvae was tested through exclusion treatments at 20 replicate stations over four elevations at one site, while pupae were set out to measure predation at two elevations at three sites. 3. Larval densities were reduced by bird predation at three lower elevations, but not at the highest elevation, and predation rates were 1.9 times higher at the lowest elevation than at the highest elevation. The rate of predation on larvae was not related to background larval density or nest box occupancy, although there were more eggs and chicks at the lowest elevation. There were no consistent differences in predation on pupae by elevation. 4. These results suggest that elevational variation in avian predation pressure on larvae may help to drive elevational differences in outbreak tendency, and that birds may play a more important role in geometrid population dynamics than the focus on invertebrate and soil predators of previous work would suggest.  相似文献   

7.
The relationship between the climate and budburst of the mountain birch was evaluated for two areas in subarctic (ca 69°N) Fennoscandia; at Abisko, Swedish Lapland, and at Kevo, Finnish Lapland. Thermal time (TT, degree‐day sums) to budburst was calculated for experimental conditions in the laboratory and for in situ observations of budburst. Two types of models predicting leaf emergence in situ were used: 1) TT to budburst for different threshold temperatures based on daily mean (TTMean) or daily maximum (TTMax) temperatures and 2) ecophysiological budburst models. The obtained models were used to estimate effects of a changed climate.
Laboratory experiments of TT to budburst indicated no differences in the thermal requirements at the two areas. Temperature requirements of budburst declined successively during the progression of spring, from ca 250 degree‐days (>+2°C) in January to ca 100 in May. No significant trend in the date of budburst was found over the last 70 (Abisko) or 20 (Kevo) yr. There were some differences in the type of model that best explained the date of budburst in situ at the two areas. For Kevo the best prediction (minimum root mean square error, RMSE) of budburst was obtained by a simple thermal time model (TTMean>5.5°C) from 1 January (RMSE=2.1). For budburst at Abisko, models based on daily maximum temperature fitted better than those based on daily means. For Abisko, models based on thermal time accumulation only showed systematic errors in the predicted budburst that were correlated with budburst previous year (BBPY). Including this apparent memory effect in the model decreased the error by 2.4 d. The best prediction for Abisko was thus obtained using TTMAX>6.5 (RMSE=3.1) from 1 January.
Using these models to predict the effect of a changed air temperature climate indicate 3–8 d earlier budburst for a one‐degree increase in temperature, the effect being smaller for Kevo than for Abisko. For both areas a change in May temperature has a larger effect on the date of budburst than changes in any other month.  相似文献   

8.
OLAV HOGSTAD 《Ibis》2005,147(1):77-91
In northern Fennoscandia, the geometrid moths Epirrita autumnata and Operophtera brumata have cyclicities in density with mass occurrence at 10‐year intervals. The larvae of Epirrita and Operophtera attain a size of 2–3 cm and 1.5–2 cm, respectively, and are nutritious food items for passerine birds. To examine whether these larvae have any numerical and/or functional influence on a passerine bird community (mountain birch forest in Budal, central Norway) during a 30‐year period (1972–2001), I estimated their abundance (number of larvae per 100 sweeps) in the birch canopy, and the densities of breeding birds in the passerine community. In addition, from 1972 to 1998, I monitored the nesting success of five of the bird species. The foraging pattern of the most abundant bird species and their gizzard contents (adults and nestlings) were examined in 1972–78 (covering population peaks of both the geometrids). Population peaks of Epirrita occurred in 1975–76, 1985–86 and 1996, and of Operophtera in 1976–77, 1986–87 and 1997–98. The passerine community consisted of eight species that were territorial in all 30 years, one species in 26 years, three species in 14–21 years and three species in 1–4 years. Only the Brambling Fringilla montifringilla population responded numerically to the fluctuations of Epirrita and Operophtera. Brambling was also the only species whose mean clutch size varied between years, and this correlated positively with the density of Epirrita. The mean annual nesting success of Willow Warbler Phylloscopus trochilus, Bluethroat Luscinia svecica and Common Redpoll Carduelis flammea tended to be higher in years with mass outbreaks of Epirrita, but was significantly so only for Reed Bunting Emberiza schoeniclus. The abundance of Operophtera larvae showed no influence on the nesting success of any bird species. The passerines foraged more frequently in the birch canopy in the Epirrita outbreak years (1975–76) than in the years before or after. Gizzard analyses of five adult passerine species and their nestlings showed that Epirrita was the main food item in 1974–76. Even though Operophtera occurred in large numbers in birch trees in 1976 and 1977, only a few larvae were found in the gizzards of the passerines. None of the passerines showed an increase in their population density in the year following the larval outbreaks, but the densities of Willow Warbler and Bluethroat increased in the succeeding year, indicating a higher return rate for these species. The study shows the existence of a dietary response and also indicates a reproductive response to the changes in the abundance of Epirrita in mountain birch forest. The lack of numerical response in the passerines (except the Brambling) to the fluctuation in Epirrita contrasts with the pattern described for passerine communities in northern temperate deciduous forests in North America, where Lepidoptera caterpillars periodically have mass outbreaks.  相似文献   

9.
PekkaKaitaniemi  KaiRuohomäki 《Oikos》2006,115(3):537-548
The degree of autonomy shown by plant structures in response to natural herbivory remains uncertain. Previous studies have usually been based on simulated herbivory or the use of caged herbivores. In this study, experimental trees were subjected to long-lasting defoliation by uncaged insect larvae. The exact 3D architecture of the whole shoot system and the amount of local damage elicited by the larvae in individual tree shoots were measured to investigate herbivore-elicited changes in growth at all levels of branching hierarchy within the crowns of mountain birch ( Betula pubescens ssp. czerepanovii ). Multiple explanatory variables were derived from the data. Defoliation by uncaged larvae elicited a combination of local and integrated growth responses. Especially the integrated responses were clear and consistent during the two years of study and resulted in reduced elongation growth. The localised component most often included the effect of defoliation at several branching orders, including also changes in self-shading. This suggests the involvement of source–sink interactions or other changes in the control of resource allocation within a larger scale. Therefore, the assumption of autonomous modules may offer an overly limited view of plant responses to localised herbivory, which appear to involve both localised and integrated components.  相似文献   

10.
S. Hanhimäki  J. Senn 《Oecologia》1992,91(3):318-331
Summary Studies on rapidly inducible resistance in trees against insect herbivores show substantial variation in the strength of responses. Here we report the results of a study which examined causes of this variation. We bioassayed the quality of leaves of two developmental phases (young vs. mature) of the mountain birch Betula pubescens ssp. tortuosa by measuring the growth of two instars of Epirrita autumnata larvae. We used only short shoot leaves from trees of a natural stand, uniform in size and age. Damage was caused by larvae and artificial tearing of leaf lamina, varying the scale and time. We separated seasonal changes in plants from instar-dependent effects of the animals by testing experimental larvae in two subsequent growth trials. We found that only larval-made damage induced responses in leaves that made the leaves significantly poorer quality for the test larvae. Artificial damage induced only weak responses, and artificial canopy-wide damage even caused slight improvement of leaf quality. Cumulative leaf damage did not strengthen birch responses. Leaves that were in the expansion phase responded to damage while fully-expanded, mature leaves showed no response. The pattern of responses indicated that there might be physiological constraints: small-scale damage induced resistance against the larvae but largescale damage did not. Prevalent weather conditions might have modified these responses. Larvae of two instars and sexes, of low- and high-density populations responded to leaf damage similarly. However, prior experience of larvae with the host plant may have affected subsequent larval performance. Variation in rapidly inducible responses in birches was caused by plant characters rather than by test animals.  相似文献   

11.
The following range of changes in response to anthropogenic stress has been revealed in experimental birch seedlings relative to control: increased mitotic index, the range and frequency of abnormal mitoses, number of cells with persistent nucleoli, and number of cells in prophase. Cells with vacuolated cytoplasm were also observed. The mutagenic pressure on the organisms in the industrial areas of Voronezh demonstrated a trend to increase, which points to their high environmental pollution.  相似文献   

12.
In Lepidoptera, effects of larval crowding on life history traits may manifest themselves as changes in growth rate and duration of larval period. For the outbreaking geometrid moth, Epirrita autumnata , impacts of crowding have been shown in earlier laboratory studies, and these responses were modified by diet quality. In this study, the aim was to find out the specific nature of crowding effects of E. autumnata in the field. E. autumnata larvae were reared individually and in groups in mesh bags on mountain birch, both on good and poor quality foliage. Three field experiments were carried out with different densities in the crowded treatment (12, 21 and 45 larvae per 100 short shoots of mountain birch), simulating intermediate to severe outbreaks. The study revealed the density interval (12–21) within which impacts of crowding become evident. Significant effects were mostly found with the two highest densities in the crowded treatment combined with poor foliage quality. In those treatments, crowding resulted in 8–12% and 24–33% decrease in pupal mass and larval survival, respectively. The results of the present field experiments, however, did not corroborate the results of earlier laboratory studies: duration of larval period was not substantially affected, net effects of crowding were negative and interactions between crowding and foliage quality were contrary to those obtained in earlier laboratory studies. In many other Lepidoptera as well, the knowledge on responses to crowding may be mostly qualitative since most crowding experiments have been conducted in laboratory.  相似文献   

13.
Adaptations to pollution among long‐lived trees have rarely been documented, possibly because of their long reproductive cycles and the evolutionarily short timescales of anthropogenic pollution. Here, I present the results of a greenhouse experiment that suggest rapid evolutionary adaptation of mountain birch [Betula pubescens subsp. czerepanovii (Orlova) Hämet‐Ahti] to heavy metal (HM) stress around two copper–nickel smelters in NW Russia. The adaptation incurs a cost with reduced performance of adapted seedlings in pristine conditions. The industrial barrens around the studied smelters are extremely high‐stress sites with low seed germination and survival. It is likely that strong natural selection has eliminated all sensitive genotypes within one or two generations, with only the most tolerant individuals persisting and producing adapted seeds in the individual barrens. The results were similar from around both smelters, suggesting parallel evolution towards HM resistance.  相似文献   

14.
Studies of ground-nesting birds stress the importance of high nest losses as a factor influencing population dynamics. In particular, nest predation has been found to be accentuated in human-modified forest landscapes. In boreal ecosystems, the assemblage of nest predators is likely to be temporally variable. Thus, multi-year predation studies are required in order to highlight the temporal aspects of habitat and edge-specific ground-nest predation. On this basis, we conducted a 3-year predation study in Northern Norwegian mountain birch forests which had been fragmented by spruce plantations. Track boards were used to identify predators in different habitat and edge types. We used logistic regression to assess the importance and consistency of spatial and temporal predictors for the predation rate of six predator species. Total predation rates were high and were higher in the second and third year (range 89.9–96.7%) compared to the first year of the study (range 57.1–75.3%). Mammalian predation decreased while avian predation increased over the 3 years. Red fox (Vulpes vulpes) and hooded crow (Corvus cornix) were the dominant predators, followed by raven (Corvus corax) and magpie (Pica pica). Pine marten (Martes martes) and stoat (Mustela erminea) predation was low and almost absent in two of the years. Within the study years, predator species exhibited different temporal trends, probably owing to species-specific functional responses. While some edge types were preferred consistently over time by the dominant predators, the spatial pattern of predation was mainly due to unexplained large-scale differences among landscape blocks. This large-scale pattern was constant over the three study years despite the strong temporal fluctuation in predation rates within and between years.  相似文献   

15.
Canopies of heterophyllous trees expand by production of long shoots. We have previously shown in mountain birch ( Betula pubescens ssp. czerepanovii ) that damage to internode leaves within long shoots does not impede shoot growth, indicating that long-shoot elongation occurs by means of external resources. To study to what extent leaves other than true long-shoot leaves are necessary for the normal growth of mountain birch long shoots, we simulated herbivore damage to the two basal leaves of shoots (which flush simultaneously with short-shoot leaves) and the short-shoot leaves nearest to the long shoot within the branch. Damage to the two basal long-shoot leaves significantly reduced long-shoot growth. Additional damage to short-shoot leaves, situated proximally to the long shoot, did not retard long-shoot growth any more than damage to basal leaves alone. To determine the extent to which short-shoot leaves within a large branch are responsible for the pooled long-shoot production of the branch, we clipped differing proportions of short-shoot leaves from such branches. We found small but significant reduction in the pooled length of the long shoots of the branch, presumably indicating a limited role in long-shoot elongation of current photosynthates within the branch. Our experiments indicate that long shoots are not independent modular units in their carbon economy.  相似文献   

16.
We studied interactions between microfungi and herbivores sharing a host tree. In a series of experiments and field observations over a 3‐year period, we compared phenotypic and genetic correlations of fungal frequencies and performance of invertebrate herbivores growing on mature half‐sib progenies of mountain birches (Betula pubescens ssp. czerepanovii) in two environments, a forested river valley and an adjacent higher‐elevation mountain birch woodland. We found little support for direct relation between fungal frequencies and performance of herbivore species. Instead, genetic correlations, particularly between autumnal moth (Epirrita autumnata) and rust fungus (Melampsoridium betulinum), suggest that herbivore performance may be caused by (1) genetic differences in plant quality for fungi and herbivores, or (2) genetic differences in responses to environmental conditions.  相似文献   

17.
High- and low-altitude ecotypes of mountain birch (Betula pubescens ssp. czerepanovii) showed clear differences in their responses to various experimental conditions, including two temperature regimes and four fertilisation rates. There was, however, no simple way to characterise the elevational ecotypes in terms of relative growth rate, nitrogen (N) productivity, or root N uptake rate. The leaf N concentration was generally higher in the high-altitude seedlings than in the low-altitude seedlings. At low temperature, high-altitude mountain birch maintained a relatively high growth rate by combining high root N uptake rate and high leaf N concentration with high N productivity. An increase in temperature and/or fertiliser rate resulted in a marginal increase in N productivity in the high-altitude seedlings but resulted in a strong increase in N productivity in the low-altitude seedlings. In parallel, increased temperature resulted in a pronounced decrease in leaf N concentration only in the low-altitude seedlings. Our results suggest that the weak growth response to increased temperature in high-altitude mountain birch is functionally related to high leaf N concentration. The high leaf N concentration of high-altitude mountain birch is genetically determined and has an adaptive value in a cold environment. This suggests that there is a trade-off between high N productivity at low temperature and a strong response of N productivity to temperature. Received: 21 March 1998 / Accepted: 1 December 1998  相似文献   

18.
Soil amelioration by a wood-ant species and its consequences for the larval performance of autumnal moths feeding on mountain birch were studied at various distances from the nest mound. Soil nitrate and ammonium nitrogen did not show any clear relationship with distance. However, trees growing in the mound had over 20% more foliar nitrogen than more distant trees. When moth larvae were experimentally protected from predation, their survival rate and final weight tended to decrease with increasing distance. In a laboratory experiment with detached leaves, the relative growth rate of larvae was roughly 30% higher on leaves from trees located on the mound. Differences in larval performance refute the Plant Stress Hypothesis proposed by T.C.R. White and support P.W. Price's Plant Vigor Hypothesis. Predation by ants was examined along the same gradient in trees with and without a glue band that excluded ants from the canopy. Reduction in the daily survival rate of larvae attributable to ant predation was about 35% in trees growing in the mound and around 5% at a distance of 20 m. Other things being equal, about 25 times more larvae entering the penultimate instar would achieve the pupal stage outside the wood-ant territory than in the vicinity of the mound. While both the fertilizing and predatory influence of wood ants is clear, the domain of predation is much larger than the area where trees and their herbivores can exploit enhanced nutrient levels in and around ant mounds. The existence of undamaged green islands around ant mounds in otherwise totally defoliated mountain-birch forests cannot be explained by soil amelioration by wood ants but rather by their predatory activity. Received: 21 November 1996 / Accepted: 8 September 1997  相似文献   

19.
Genetic engineering of plant resistance characteristics against fungi may unintentionally influence traits that are important for plant–herbivore interactions. We studied the palatability of transgenic birch (Betula pendula), aspen (Populus tremula) and hybrid aspen (P. tremula x tremuloides) genetically modified with the aim to improve fungal disease resistance, to selective mammalian herbivores in cafeteria tests. Roe deer (Capreolus capreolus) were fed with transgenic birch carrying a sugar beet chitinase IV gene. In the experiment with roe deer, none of the six transgenic birch lines differed significantly from the wild-type control in the proportion of consumed plant biomass. Correlation analyses suggested that sugar content did not guide the feeding preferences of roe deer but revealed a positive correlation between starch content and proportion of mass consumed. However, the variation in starch content could not be related to the level of transgene expression. Mountain hares (Lepus timidus) were fed with plant material from chitinase transgenic birch and aspen and hybrid aspen that carried a pinosylvin synthase gene from Scots pine. One transgenic birch line was significantly less palatable to hares than the wild-type control. The results of this study suggest that plant genotype may be related to the palatability of plant material when transgenic and wild-type woody plant material is used as winter food for hares. The results of this case study did not reveal changes in the palatability of the studied transgenic lines that could be readily related to the functioning of the used transgenes.  相似文献   

20.
Diversity of birch sawfly responses to seasonally atypical diets   总被引:4,自引:0,他引:4  
Most insect herbivores are specialised on a particular plant taxon. To have a better understanding of host shift functions and consequences for insect herbivores, it is essential to gather more information on the effects of variation in host quality on specialists across species and environments. We examined the effects of seasonally atypical food on mortality, developmental time, and final body mass of six sawfly species (Hymenoptera: Symphyta) feeding on the foliage of mountain birch (Betula pubescens ssp. czerepanovii), whose pooled larval feeding periods form a gradient and cover the growing season. Insect phenology was manipulated so that the larvae of early-season species would feed on atypically mature leaves and mid- or late-season species would feed on atypically young leaves of their major host plant. Mortality increased dramatically for all species when the larval feeding schedule was advanced or delayed. This indicates a high degree of specialisation not only on a particular host but also to its phenological phases. The main cause of mortality on novel food was a rejection of the diet by the young larvae and their subsequent starvation. An interesting observation was that late-season species showed this response on nutritious young foliage. The effects of seasonally atypical diets on larval development and growth were species-specific and milder than the effects on mortality. Interestingly, for those individuals that accepted it, atypical food seemed to be most beneficial for species appearing at both ends of the seasonal gradient, which might be related to a wider exposure to variable food quality in natural conditions compared with other species. The diversity of responses to atypical food among closely related herbivore species with overlapping feeding periods on the same host plant is the most crucial finding of this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号