首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant α-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the α-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13 756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional α-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus α-amylases was observed. The inhibitor is more effective against insect α-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional α-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

2.
Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Five alpha-amylase inhibitors of the structural 0.19 family were isolated from wheat kernels, and assayed against three insect alpha-amylases and porcine pancreatic alpha-amylase, revealing several intriguing differences in inhibition profiles, even between proteins sharing sequence identity of up to 98%. Inhibition of the enzyme from a commercially important pest, the bean weevil Acanthoscelides obtectus, is observed for the first time. Using the crystal structure of an insect alpha-amylase in complex with a structurally related inhibitor, models were constructed and refined of insect and human alpha-amylases bound to 0.19 inhibitor. Four key questions posed by the differences in biochemical behaviour between the five inhibitors were successfully explained using these models. Residue size and charge, loop lengths, and the conformational effects of a Cys to Pro mutation, were among the factors responsible for observed differences in specificity. The improved structural understanding of the bases for the 0.19 structural family inhibitor specificity reported here may prove useful in the future for the rational design of inhibitors possessing altered inhibition characteristics.  相似文献   

3.
Insect pests and pathogens (fungi, bacteria and viruses) are responsible for severe crop losses. Insects feed directly on the plant tissues, while the pathogens lead to damage or death of the plant. Plants have evolved a certain degree of resistance through the production of defence compounds, which may be aproteic, e.g. antibiotics, alkaloids, terpenes, cyanogenic glucosides or proteic, e.g. chitinases, beta-1,3-glucanases, lectins, arcelins, vicilins, systemins and enzyme inhibitors. The enzyme inhibitors impede digestion through their action on insect gut digestive alpha-amylases and proteinases, which play a key role in the digestion of plant starch and proteins. The natural defences of crop plants may be improved through the use of transgenic technology. Current research in the area focuses particularly on weevils as these are highly dependent on starch for their energy supply. Six different alpha-amylase inhibitor classes, lectin-like, knottin-like, cereal-type, Kunitz-like, gamma-purothionin-like and thaumatin-like could be used in pest control. These classes of inhibitors show remarkable structural variety leading to different modes of inhibition and different specificity profiles against diverse alpha-amylases. Specificity of inhibition is an important issue as the introduced inhibitor must not adversely affect the plant's own alpha-amylases, nor the nutritional value of the crop. Of particular interest are some bifunctional inhibitors with additional favourable properties, such as proteinase inhibitory activity or chitinase activity. The area has benefited from the recent determination of many structures of alpha-amylases, inhibitors and complexes. These structures highlight the remarkable variety in structural modes of alpha-amylase inhibition. The continuing discovery of new classes of alpha-amylase inhibitor ensures that exciting discoveries remain to be made. In this review, we summarize existing knowledge of insect alpha-amylases, plant alpha-amylase inhibitors and their interaction. Positive results recently obtained for transgenic plants and future prospects in the area are reviewed.  相似文献   

4.
Zabrotes subfasciatus is a devastating starch-dependent storage bean pest. In this study, we attempted to identify novel alpha-amylase inhibitors from wild bean seeds, with efficiency toward pest alpha-amylases. An inhibitor named Phaseolus vulgaris chitinolytic alpha-amylase inhibitor (PvCAI) was purified and mass spectrometry analyses showed a protein with 33330 Da with the ability to form dimers. Purified PvCAI showed significant inhibitory activity against larval Z. subfasciatus alpha-amylases with no activity against mammalian enzymes. N-terminal sequence analyses showed an unexpected high identity to plant chitinases from the glycoside hydrolase family 18. Furthermore, their chitinolytic activity was also detected. Our data provides compelling evidence that PvCAI also possessed chitinolytic activity, indicating the emergence of a novel alpha-amylase inhibitor class.  相似文献   

5.
BACKGROUND: alpha-Amylases constitute a family of enzymes that catalyze the hydrolysis of alpha-D-(1,4)-glucan linkages in starch and related polysaccharides. The Amaranth alpha-amylase inhibitor (AAI) specifically inhibits alpha-amylases from insects, but not from mammalian sources. AAI is the smallest proteinaceous alpha-amylase inhibitor described so far and has no known homologs in the sequence databases. Its mode of inhibition of alpha-amylases was unknown until now. RESULTS: The crystal structure of yellow meal worm alpha-amylase (TMA) in complex with AAI was determined at 2.0 A resolution. The overall fold of AAI, its three-stranded twisted beta sheet and the topology of its disulfide bonds identify it as a knottin-like protein. The inhibitor binds into the active-site groove of TMA, blocking the central four sugar-binding subsites. Residues from two AAI segments target the active-site residues of TMA. A comparison of the TMA-AAI complex with a modeled complex between porcine pancreatic alpha-amylase (PPA) and AAI identified six hydrogen bonds that can be formed only in the TMA-AAI complex. CONCLUSIONS: The binding of AAI to TMA presents a new inhibition mode for alpha-amylases. Due to its unique specificity towards insect alpha-amylases, AAI might represent a valuable tool for protecting crop plants from predatory insects. The close structural homology between AAI and 'knottins' opens new perspectives for the engineering of various novel activities onto the small scaffold of this group of proteins.  相似文献   

6.
Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.  相似文献   

7.
A trypsin inhibitor, isolated from whole-wheat grain (Triticum aestivum L.) by the method of bio-specific chromatography on trypsin-Sepharose, was potent in inhibiting human salivary alpha-amylase. The bi-functional alpha-amylase/trypsin inhibitor was characterized by a narrow specificity for other alpha-amylases and proteinases. The high thermostability of the inhibitor was lost in the presence of SH group-reducing agents. The inhibitor-trypsin complex retained its activity against alpha-amylase. The inhibitor-alpha-amylase complex was active against trypsin. Studies of the enzyme kinetics demonstrated that the inhibition of alpha-amylase and trypsin was noncompetitive. Our results suggest the existence of two independent active sites responsible for the interaction with the enzymes.  相似文献   

8.
Two proteinaceous alpha-amylase inhibitors termed alphaAI-Pa1 and alphaAI-Pa2 were purified from seeds of a cultivated tepary bean (Phaseolus acutifolius A. Gray, cv. PI311897). The two inhibitors differed in their specificity towards alpha-amylases of insect pests such as bruchids, although neither showed any inhibitory activity against alpha-amylases of mammalian, bacterial or fungal origin. AlphaAI-Pa2 resembles two common bean inhibitors, alphaAI-1 and alphaAI-2, in several characteristics such as N-terminal amino acid sequences and oligomeric structure being composed of alpha and beta subunits. In contrast alphaAI-Pa1 is composed of a single glycopolypeptide with a molecular mass of 35 kDa, and its N-terminal amino acid sequence resembled that of seed lectins in tepary bean and common bean. The information on the two tepary bean alpha-amylase inhibitors may be useful not only for providing insight into critical structure for the specificity towards different alpha-amylase enzymes but also for enhancing insect resistance in crops.  相似文献   

9.
The complete nucleotide sequences of the cDNA and its gene that encode a bifunctional alpha-amylase/subtilisin inhibitor of rice (Oryza sativa L.) (RASI) were analyzed. RASI cDNA (939 bp) encoded a 200-residue polypeptide with a molecular mass of 21,417 Da, including a signal peptide of 22 amino acids. Sequence comparison and phylogenetic analysis showed that RASI is closely related to alpha-amylase/subtilisin inhibitors from barley and wheat. RASI was found to be expressed only in seeds, suggesting that it has a seed-specific function. A coding region of RASI cDNA without the signal peptide was introduced into Escherichia coli and was expressed as a His-tagged protein. Recombinant RASI was purified to homogeneity in a single step by Ni-chelating affinity column chromatography and characterized to elucidate the target enzyme. The recombinant inhibitor had strong inhibitory activity toward subtilisin, with an equimolar relationship, comparable with that of native RASI, and weak inhibitory activity toward some microbial alpha-amylases, but not toward animal or insect alpha-amylases. These results suggest that RASI might function in the defense of the seed against microorganisms.  相似文献   

10.
The native and oxidized alpha-amylase inhibitor Z-2685, isolated from the culture medium of Streptomyces parvullus FH-1641, and its overlapping cleavage products were degraded by the automatic Edman technique. Digestion was carried out with pepsin, thermolysin and trypsin. The alpha-amylase inhibitor is a polypeptide consisting of 76 amino acids with a molecular mass of 8 129 Da. With the exception of methionine and lysine, all naturally occurring amino acids are present. It is interesting that identical regions exist, in particular the sequence Trp-Arg-Tyr common to all four known microbial inhibitor sequences. We believe that the side chains of these three amino acids are important for interacting with the alpha-amylase molecule. Computer alignment enabled us to show a possible binding region in the alpha-amylase molecule which might react with the inhibitors. Furthermore, homology exists to mammalian alpha-amylases. This result is explained by the assumption that the inhibitor evolved from a duplication of the original gene of the enzyme.  相似文献   

11.
Alam N  Gourinath S  Dey S  Srinivasan A  Singh TP 《Biochemistry》2001,40(14):4229-4233
The ragi alpha-amylase/trypsin bifunctional inhibitor (RATI) from Indian finger millet, Ragi (Eleucine coracana Gaertneri), represents a new class of cereal inhibitor family. It exhibits a completely new motif of trypsin inhibitory site and is not found in any known trypsin inhibitor structures. The alpha-amylase inhibitory site resides at the N-terminal region. These two sites are independent of each other and the inhibitor forms a ternary (1:1:1) complex with trypsin and alpha-amylase. The trypsin inhibition follows a simple competitive inhibition obeying the canonical serine protease inhibitor mechanism. However, the alpha-amylase inhibition kinetics is a complex one if larger (> or =7 glucose units) substrate is used. While a complete inhibition of trypsin activity can be achieved, the inhibition of amylase is not complete even at very high molar concentration. We have isolated the N-terminal fragment (10 amino acids long) by CNBr hydrolysis of RATI. This fragment shows a simple competitive inhibition of alpha-amylase activity. We have also synthesized various peptides homologous to the N-terminal sequence of RATI. These peptides also show a normal competitive inhibition of alpha-amylase with varying potencies. It has also been shown that RATI binds to the larger substrates of alpha-amylase. In light of these observations, we have reexamined the binding of proteinaceous inhibitors to alpha-amylase and its implications on the mechanism and kinetics of inhibition.  相似文献   

12.
The major inhibitor of trypsin in seeds of Prosopsis juliflora was purified by precipitation with ammonium sulphate, ion-exchange column chromatography on DEAE- and CM-Sepharose and preparative reverse phase HPLC on a Vydac C-18 column. The protein inhibited trypsin in the stoichiometric ratio of 1:1, but had only weak activity against chymotrypsin and did not inhibit human salivary or porcine pancreatic alpha-amylases. SDS-PAGE indicated that the inhibitor has a Mr of ca 20,000, and IEF-PAGE showed that the pI is 8.8. The complete amino acid sequence was determined by automatic degradation, and by DABITC/PITC microsequence analysis of peptides obtained from enzyme digestions of the reduced and S-carboxymethylated protein with trypsin, chymotrypsin, elastase, the Glu-specific protease from S. aureus and the Lys-specific protease from Lysobacter enzymogenes. The inhibitor consisted of two polypeptide chains, of 137 residues (alpha chain) and 38 residues (beta chain) linked together by a single disulphide bond. The amino acid sequence of the protein exhibited homology with a number of Kunitz proteinase inhibitors from other legume seeds, the bifunctional subtilisin/alpha-amylase inhibitors from cereals and the taste-modifying protein miraculin.  相似文献   

13.
Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous alpha-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological approaches have been outlined for exploitation of the inhibitory function.  相似文献   

14.
The biochemical properties of the digestive alpha-amylase from Tecia solanivora larvae, an important and invasive insect pest of potato (Solanum tuberosum), were studied. This insect has three major digestive alpha-amylases with isoelectric points 5.30, 5.70 and 5.98, respectively, which were separated using native and isoelectric focusing gels. The alpha-amylase activity has an optimum pH between 7.0 and 10.0 with a peak at pH 9.0. The enzymes are stable when heated to 50 degrees C and were inhibited by proteinaceous inhibitors from Phaseolus coccineus (70% inhibition) and P. vulgaris cv. Radical (87% inhibition) at pH 6.0. The inhibitors present in an amaranth hybrid inhibited 80% of the activity at pH 9.0. The results show that the alpha-amylase inhibitor from amaranth seeds may be a better candidate to make genetically-modified potatoes resistant to this insect than inhibitors from common bean seeds.  相似文献   

15.
The primary structure and proteolytic processing of the alpha-amylase isoinhibitor alpha AI-1 from common bean (Phaseolus vulgaris cv. Magna) was determined by protein chemistry techniques. The inhibitory specificity of alphaAI-1 was screened with a panel of the digestive alpha-amylases from 30 species of insects, mites, gastropod, annelid worm, nematode and fungal phytopathogens with a focus on agricultural pests and important model species. This in vitro analysis showed a selective inhibition of alpha-amylases from three orders of insect (Coleoptera, Hymenoptera and Diptera) and an inhibition of alpha-amylases of the annelid worm. The inhibitory potential of alphaAI-1 against several alpha-amylases was found to be modulated by pH. To understand how alphaAI-1 discriminates among closely related alpha-amylases, the sequences of the alpha-amylases sensitive, respectively, insensitive to alphaAI-1 were compared, and the critical determinants were localized on the spatial alpha-amylase model. Based on the in vitro analysis of the inhibitory specificity of alphaAI-1, the in vivo activity of the ingested alphaAI-1 was demonstrated by suppression of the development of the insect larvae that expressed the sensitive digestive alpha-amylases. The first comprehensive mapping of alphaAI-1 specificity significantly broadens the spectrum of targets that can be regulated by alpha-amylase inhibitors of plant origin, and points to potential application of these protein insecticides in plant biotechnologies.  相似文献   

16.
Zeamatin inhibits trypsin and alpha-amylase activities   总被引:1,自引:0,他引:1  
Zeamatin is a 22-kDa protein isolated from Zea mays that has antifungal activity against human and plant pathogens. Unlike other pathogenesis-related group 5 proteins, zeamatin inhibits insect alpha-amylase and mammalian trypsin activities. It is of clinical significance that zeamatin did not inhibit human alpha-amylase activity and inhibited mammalian trypsin activity only at high molar concentrations.  相似文献   

17.
Alpha-amylases are ubiquitous proteins which play an important role in the carbohydrate metabolism of microorganisms, animals and plants. Living organisms use protein inhibitors as a major tool to regulate the glycolytic activity of alpha-amylases. Most of the inhibitors for which three-dimensional (3-D) structures are available are directed against mammalian and insect alpha-amylases, interacting with the active sites in a substrate-like manner. In this review, we discuss the detailed inhibitory mechanism of these enzymes in light of the recent determination of the 3-D structures of pig pancreatic, human pancreatic, and yellow mealworm alpha-amylases in complex with plant protein inhibitors. In most cases, the mechanism of inhibition occurs through the direct blockage of the active center at several subsites of the enzyme. Inhibitors exhibiting "dual" activity against mammalian and insect alpha-amylases establish contacts of the same type in alternative ways.  相似文献   

18.
Paim I, a protein alpha-amylase inhibitor, inhibits animal alpha-amylases from pig, dog, cow, horse, etc. but has no activity against human salivary and pancreatic amylases. The primary structure of Paim I has been determined by Edman degradation and fast atom bombardment mass spectrometry (FABMS). This protein is a single-chain polypeptide of 73 amino acid residues with a calculated molecular weight from the sequence data of 7415.3 (monoisotopic molecular weight) and 7420.2 (average molecular weight). The sequencing strategy chosen for Paim I consists of four steps. First, the accurate molecular weights of the intact and tetra-S-carboxymethylated Paim I are determined by fast atom bombardment mass spectrometry. Second, the primary fragments generated by Staphylococcus aureus V8 protease are isolated by reversed-phase high-performance liquid chromatography. The molecular weights of these subpeptides are determined by FABMS. The peptides that must be sequenced are selected by the molecular weights of these subpeptides and the tetra-S-carboxymethylated Paim I. Third, these subpeptides and the whole protein are sequenced by automated Edman degradation. Finally, the primary structure of tetra-S-carboxymethylated Paim I is confirmed by the combination of tryptic, chymotryptic, and S. aureus V8 protease digestion and FABMS. The sequence of Paim I is compared with those of Haim II, Hoe-467A, Z-2685, and AI-3688 because they have different alpha-amylase inhibition spectra against mammalian alpha-amylases but belong to a family of related proteins.  相似文献   

19.
Interaction of human alpha-amylases with inhibitors from wheat flour   总被引:1,自引:0,他引:1  
The interaction of four purified alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) inhibitors with human salivary and pancreatic alpha-amylases was investigated. The inhibitory activity of the four proteins towards salivary alpha-amylase was significantly increased by pre-incubation of the enzyme with inhibitor before adding substrate. This effect was not observed with the inhibition of pancreatic alpha-amylase by inhibitors 1 and 2. Inhibition of both amylases was affected to different degrees by incubating starch with inhibitor prior to the addition of enzyme. Maltose, at concentrations which only slightly affected amylase activity, prevented the inhibition of both enzymes by all four inhibitors. Gel filtration studies on salivary amylase-inhibitor mixtures showed the formation of EI complexes on a mol-to-mol ratio. A similar complex between pancreatic alpha-amylase and inhibitor 4 was observed, though complex formation between pancreatic alpha-amylase and the other inhibitors was not clearly demonstrated.  相似文献   

20.
The adult coffee berry borer (Hypothenemus hampei Ferrari [Coleoptera: Scolytidae]), a major insect pest of coffee, has two major digestive alpha-amylases that can be separated by isoelectric focusing. The alpha-amylase activity has a broad pH optimum between 4.0 and 7.0. Using pH indicators, the pH of the midgut was determined to be between 4.5 and 5.2. At pH 5.0, the coffee berry borer alpha-amylase activity is inhibited substantially (80%) by relatively low levels of the amylase inhibitor (alphaAI-1) from the common bean, Phaseolus vulgaris L., and much less so by the amylase inhibitor from Amaranthus. We used an in-gel zymogram assay to demonstrate that seed extracts can be screened to find suitable inhibitors of amylases. The prospect of using the genes that encode these inhibitors to make coffee resistant to the coffee berry borer via genetic engineering is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号