共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Cell calcium》2019
Canonical TRP channels (TRPC) are non-selective cation channels that are involved in various important physiological processes. Currently, the structures of different TRPC ion channel family members are resolved by cryo-EM at resolutions ranging from 2.8 Å to 5.8 Å. These structures reveal the conserved architecture of TRPC ion channels as well as the specific features of each channel subtype. This review focuses on the structural differences in the extracellular portions, transmembrane domains and the cytoplasmic domains of TRPC channels. 相似文献
3.
Wissenbach U Niemeyer BA Flockerzi V 《Biology of the cell / under the auspices of the European Cell Biology Organization》2004,96(1):47-54
Calcium (Ca2+) is an ubiquitous intracellular signal that is responsible for a plethora of cellular processes including fertilization, secretion, contraction, neuronal signaling and learning. In addition, changes in intracellular Ca2+ have been known to influence cell proliferation and differentiation for more than three decades. Recent studies have indicated that members of the transient receptor potential (TRP) family of ion channels which respond to many different modes of stimulation both from within and outside the cell may be a primary mode of cation and Ca2+ entry into cells and may have roles in growth control. Moreover, changes in the expression of these channels may contribute to certain cancers. In the following, recent results concerning the expression and function of members of this family of ion channels are summarized. 相似文献
4.
瞬时受体电位通道研究进展 总被引:5,自引:0,他引:5
瞬时受体电位通道(TRP channels)是位于细胞膜上的一类重要的阳离子通道超家族.根据氨基酸序列的同源性,将已发现的28种哺乳动物,TRP通道分为:TRPC、TRPV、TRPM、TRPA、TRPP和TRPML 6个亚家族.所有的TRP通道都具有6次跨膜结构域.不同的TRP通道对钙离子和钠离子选择性不同.TRP通道分布广泛,调节机制各异,通过感受细胞内外环境的各种刺激,参与痛温觉、机械感觉、味觉的发生和维持细胞内外环境的离子稳态等众多生命活动. 相似文献
5.
TRP channels form a superfamily of channel proteins exhibiting versatile regulatory characteristics with many channels participating in the regulation of Ca2+ homeostasis and influencing the cell fate. Multitude of evidence is emerging that the colocalization of TRP channels with Ca2+-sensing elements of specific regulatory pathways leading to either proliferation or apoptosis is what makes these channels participate in cell fate regulation and, in turn, determines the final effect of Ca2+ entry via the particular channel. This review focuses on the aspects of TRP channel localization and function that affect the balance between cell survival and death and how various dysregulations of these channels may lead to perturbed balance and onset of cancer. 相似文献
6.
Nagata K 《Invertebrate neuroscience : IN》2007,7(1):31-37
Transient receptor potential (TRP) channels are attracting attention from various research areas including physiology, pharmacology
and toxicology. Our group has focused on TRPA1 channels and revealed their expression pattern, ion channel kinetics and pharmacological
characteristics. From Integrated Pest Management point of view, TRP channels could be a possible new target site of pest control
agents as well as the primary or secondary target site for known insecticides. We have examined expressed TRPA1 channels using
physiological and pharmacological methods to clarify the function of these channels. Here, we show that the TRPA1 is activated
by the insecticide and natural toxin allyl isothiocyanate which is known as insecticide. 相似文献
7.
8.
Montell C 《Cell calcium》2003,33(5-6):409-417
The transient receptor potential (TRP) superfamily is subdivided into four main classes of cation channels, TRPC, TRPV, TRPM and TRPN, each of which includes members in worms, flies, mice and humans. While the biophysical features of many of the mammalian channels have been described, relatively little is known concerning the biological roles of these channels. Forward genetic screens in Drosophila melanogaster and Caenorhabditis elegans have led to the identification of the founding members of each of these four subfamilies. Moreover, phenotypic analyses of invertebrate mutants have contributed greatly to our understanding of the roles of TRP proteins. A recurring theme is that many of these proteins function in sensory signaling processes ranging from vision to olfaction, osmosensation, light touch, social feeding, and temperature- and mechanically-induced nociception. In addition, at least one invertebrate TRP protein is required for cell division. As many of these functions may be conserved among the mammalian TRPs, the invertebrate TRPs offer valuable genetic handles for characterizing the functions of these cation channels in vivo. 相似文献
9.
《Cell calcium》2019
The Transient Receptor Potential (TRP) protein superfamily is a group of cation channels expressed in various cell types and involved in respiratory diseases such as cystic fibrosis (CF), the genetic disease caused by CF Transmembrane conductance Regulator (CFTR) mutations. In human airway epithelial cells, there is growing evidence for a functional link between CFTR and TRP channels. TRP channels contribute to transmitting extracellular signals into the cells and, in an indirect manner, to CFTR activity via a Ca2+ rise signaling. Indeed, mutated CFTR-epithelial cells are characterized by an increased Ca2+ influx and, on the opposite, by a decreased of magnesium influx, both being mediated by TRP channels. This increasing cellular Ca2+ triggers the activation of calcium-activated chloride channels (CaCC) or CFTR itself, via adenylyl cyclase, PKA and tyrosine kinases activation, but also leads to an exaltation of the inflammatory response. Another shortcoming in mutated CFTR-epithelial cells is a [Mg2+]i decrease, associated with impaired TRPM7 functioning. This deregulation has to be taken into consideration in CF physiopathology, as Mg2+ is required for ATP hydrolysis and CFTR activity. The modulation of druggable TRP channels could supplement CF therapy either an anti-inflammatory drug or for CFTR potentiation, according to the balance between exacerbation and respite phases. The present paper focus on TRPA1, TRPC6, TRPM7, TRPV2, TRPV4, TRPV6 and ORAI 1, the proteins identified, for now, as dysfunctional channels, in CF cells. 相似文献
10.
《Journal of molecular biology》2021,433(17):166914
Transient receptor potential (TRP) ion channels are a super-family of ion channels that mediate transmembrane cation flux with polymodal activation, ranging from chemical to physical stimuli. Furthermore, due to their ubiquitous expression and role in human diseases, they serve as potential pharmacological targets. Advances in cryo-EM TRP channel structural biology has revealed general, as well as diverse, architectural elements and regulatory sites among TRP channel subfamilies. Here, we review the endogenous and pharmacological ligand-binding sites of TRP channels and their regulatory mechanisms. 相似文献
11.
Transient receptor potential (TRP) channels are a family of cation channels that play a key role in ion homeostasis and cell volume regulation. In addition, TRP channels are considered universal integrators of sensory information required for taste, vision, hearing, touch, temperature, and the detection of mechanical force. Seminal investigations exploring the molecular mechanisms of phototransduction in Drosophila have demonstrated that TRP channels operate within macromolecular complexes closely associated with the cytoskeleton. More recent evidence shows that mammalian TRP channels similarly connect to the cytoskeleton to affect cytoskeletal organization and cell adhesion via ion-transport-dependent and -independent mechanisms. In this review, we discuss new insights into the interplay between TRP channels and the cytoskeleton and provide recent examples of such interactions in different physiological systems. 相似文献
12.
Tarik Smani Natalia Dionisio José J. López Alejandro Berna-Erro Juan A. Rosado 《生物化学与生物物理学报:生物膜》2014
Transient receptor potential (TRP) channels are six transmembrane-spanning proteins, with variable selectivity for cations, that play a relevant role in intracellular Ca2 + homeostasis. There is a large body of evidence that shows association of TRP channels with the actin cytoskeleton or even the microtubules and demonstrating the functional importance of this interaction for TRP channel function. Conversely, cation currents through TRP channels have also been found to modulate cytoskeleton rearrangements. The interplay between TRP channels and the cytoskeleton has been demonstrated to be essential for full activation of a variety of cellular functions. Furthermore, TRP channels have been reported to take part of macromolecular complexes including different signal transduction proteins. Scaffolding proteins play a relevant role in the association of TRP proteins with other signaling molecules into specific microdomains. Especially relevant are the roles of the Homer family members for the regulation of TRPC channel gating in mammals and INAD in the modulation of Drosophila TRP channels. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé. 相似文献
13.
Transient receptor potential (TRP) channels mediate light-induced Ca(2+) entry and the electrical response in Drosophila photoreceptors. The role of TRP channels in other invertebrate photoreceptors is unknown, particularly those, exemplified by Limulus ventral eye photoreceptors, in which calcium release from intracellular stores is prominent. We have amplified cDNA encoding three variants of a Limulus TRP channel. LptrpA and LptrpBencode proteins of 896 and 923 amino acids, differing by a 27 amino acid insert within the C-terminus. LptrpC encodes an alternative 63 amino acid sequence in the pore domain compared with LptrpB. LptrpB and LptrpC are present in ventral eye mRNA, while LptrpA is only present in brain mRNA. In situ hybridization indicates the presence of Lptrp in photoreceptors of the Limulus ventral eye. Some canonical TRP channels can be activated by diacylglycerol analogs. Injection of a diacylglycerol analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG), into Limulus photoreceptors can activate an inward current with electrical characteristics similar to the light-activated current. However, simultaneous elevation of cytosolic calcium concentration appears to be necessary. Illumination attenuates the response to OAG injections and vice versa. These results provide molecular and pharmacological evidence for a TRP channel in Limulus ventral eye that may contribute to the light-sensitive conductance. 相似文献
14.
《Cell calcium》2017
The human TRP protein family comprises a family of 27 cation channels with diverse permeation and gating properties. The common theme is that they are very important regulators of intracellular Ca2+ signaling in diverse cell types, either by providing a Ca2+ influx pathway, or by depolarising the membrane potential, which on one hand triggers the activation of voltage-gated Ca2+ channels, and on the other limits the driving force for Ca2+ entry. Here we focus on the role of these TRP channels in vascular smooth muscle and cardiac striated muscle. We give an overview of highlights from the recent literature, and highlight the important and diverse roles of TRP channels in the pathophysiology of the cardiovascular system.The discovery of the superfamily of Transient Receptor Potential (TRP) channels has significantly enhanced our knowledge of multiple signal transduction mechanisms in cardiac muscle and vascular smooth muscle cells (VSMC). In recent years, multiple studies have provided evidence for the involvement of these channels, not only in the regulation of contraction, but also in cell proliferation and remodeling in pathological conditions.The mammalian family of TRP cation channels is composed by 28 genes which can be divided into 6 subfamilies groups based on sequence similarity: TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipins), TRPV (Vanilloid), TRPP (Policystin) and TRPA (Ankyrin-rich protein). Functional TRP channels are believed to form four-unit complexes in the plasma, each of them expressed with six transmembrane domain and intracellular N and C termini.Here we review the current knowledge on the expression of TRP channels in both muscle types, and discuss their functional properties and role in physiological and pathophysiological processes. 相似文献
15.
16.
Ben Katz Olaf Voolstra Hanan Tzadok Bushra Yasin Elisheva Rhodes-Modrov Jonas-Peter Bartels 《Channels (Austin, Tex.)》2017,11(6):678-685
Drosophila photoreceptors respond to oscillating light of high frequency (~100 Hz), while increasing the oscillating light intensity raises the maximally detected frequency. Recently, we reported that dephosphorylation of the light-activated TRP ion channel at S936 is a fast, graded, light-, and Ca2+-dependent process. We further found that this process affects the detection limit of high frequency oscillating light. Accordingly, transgenic Drosophila, which do not undergo phosphorylation at the S936-TRP site (trpS936A), revealed a short time-interval before following the high stimulus frequency (oscillation-lock response) in both dark- and light-adapted flies. In contrast, the trpS936D transgenic flies, which mimic constant phosphorylation, showed a long-time interval to oscillation-lock response in both dark- and light-adapted flies. Here we extend these findings by showing that dark-adapted trpS936A flies reveal light-induced current (LIC) with short latency relative to trpWT or trpS936D flies, indicating that the channels are a limiting factor of response kinetics. The results indicate that properties of the light-activated channels together with the dynamic light-dependent process of TRP phosphorylation at the S936 site determine response kinetics. 相似文献
17.
Taoyan Liu Siyao Zhang Chenwu Huang Shuhong Ma Rui Bai Yanan Li Yun Chang Chenwen Hang Amina Saleem Tao Dong Tianwei Guo Youxu Jiang Wenjing Lu Lina Zhang Luo Jianwen Hongfeng Jiang Feng Lan 《Journal of cellular and molecular medicine》2021,25(7):3469-3483
The use of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is limited in drug discovery and cardiac disease mechanism studies due to cell immaturity. Micro-scaled grooves can promote the maturation of cardiomyocytes by aligning them in order, but the mechanism of cardiomyocytes alignment has not been studied. From the level of calcium activity, gene expression and cell morphology, we verified that the W20H5 grooves can effectively promote the maturation of cardiomyocytes. The transient receptor potential channels (TRP channels) also play an important role in the maturation and development of cardiomyocytes. These findings support the engineered hPSC-CMs as a powerful model to study cardiac disease mechanism and partly mimic the myocardial morphological development. The important role of the TRP channels in the maturation and development of myocardium is first revealed. 相似文献
18.
《Journal of molecular biology》2021,433(17):166931
The first genuine high-resolution single particle cryo-electron microscopy structure of a membrane protein determined was a transient receptor potential (TRP) ion channel, TRPV1, in 2013. This methodical breakthrough opened up a whole new world for structural biology and ion channel aficionados alike. TRP channels capture the imagination due to the sheer endless number of tasks they carry out in all aspects of animal physiology. To date, structures of at least one representative member of each of the six mammalian TRP channel subfamilies as well as of a few non-mammalian families have been determined. These structures were instrumental for a better understanding of TRP channel function and regulation. However, all of the TRP channel structures solved so far are incomplete since they miss important information about highly flexible regions found mostly in the channel N- and C-termini. These intrinsically disordered regions (IDRs) can represent between a quarter to almost half of the entire protein sequence and act as important recruitment hubs for lipids and regulatory proteins. Here, we analyze the currently available TRP channel structures with regard to the extent of these “missing” regions and compare these findings to disorder predictions. We discuss select examples of intra- and intermolecular crosstalk of TRP channel IDRs with proteins and lipids as well as the effect of splicing and post-translational modifications, to illuminate their importance for channel function and to complement the prevalently discussed structural biology of these versatile and fascinating proteins with their equally relevant ’unstructural’ biology. 相似文献
19.
《Microbes and infection / Institut Pasteur》2017,19(3):166-176
Staphylococcal infection and neutrophilic inflammation can act in concert to establish a profoundly hypoxic environment. In this review we summarise how neutrophils and Staphylococcus aureus are adapted to function under hypoxic conditions, with a particular focus on the impaired ability of hypoxic neutrophils to effect Staphylococcus aureus killing. 相似文献
20.
Cohen DM 《Seminars in cell & developmental biology》2006,17(6):630-637
A subset of TRP channel proteins undergoes regulatory N-linked glycosylation. A glycosylation site in the first extracellular loop of TRPV5 is enzymatically cleaved by a secreted glucuronidase, indirectly regulating channel function. Members of the TRPC family share a similar site, although details about a regulatory role are lacking. A second conserved TRP channel glycosylation site is found immediately adjacent to the channel pore-forming loop; both TRPV1 and TRPV4--and perhaps other TRPV family members--are influenced by glycosylation at this site. N-linked glycosylation, and the dynamic regulation of this process, substantially impacts function and targeting of TRP channels. 相似文献