首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao  Guomei  Han  Hongbin  Yang  Jun  Sun  Min  Cui  Dehua  Li  Yuanyuan  Gao  Yajuan  Zou  Jing 《中国科学:生命科学英文版》2020,63(9):1363-1379
Brain interstitial fluid drainage and extracellular space are closely related to waste clearance from the brain. Different anesthetics may cause different changes of brain interstitial fluid drainage and extracellular space but these still remain unknown. Herein,effects of the inhalational isoflurane, intravenous sedative dexmedetomidine and pentobarbital sodium on deep brain matters' interstitial fluid drainage and extracellular space and underlying mechanisms were investigated. When compared to intravenous anesthetic dexmedetomidine or pentobarbital sodium, inhalational isoflurane induced a restricted diffusion of extracellular space, a decreased extracellular space volume fraction, and an increased norepinephrine level in the caudate nucleus or thalamus with the slowdown of brain interstitial fluid drainage. A local administration of norepinephrine receptor antagonists, propranolol,atipamezole and prazosin into extracellular space increased diffusion of extracellular space and interstitial fluid drainage whilst norepinephrine decreased diffusion of extracellular space and interstitial fluid drainage. These findings suggested that restricted diffusion in brain extracellular space can cause slowdown of interstitial fluid drainage, which may contribute to the neurotoxicity following the waste accumulation in extracellular space under inhaled anesthesia per se.  相似文献   

2.
Urinary kallikrein excretion was positively correlated with urine flow and negatively with urinary osmolality, it was also positively correlated with inulin space and its both components, plasma volume and interstitial space. We postulate that increased extracellular fluid increases kallikrein excretion and kallikrein avoids water reabsorption leading to a decrease in the extracellular fluid.  相似文献   

3.
In control rats urinary kallikrein excretion was positively correlated with inulin space and its both components, plasma volume and interstitial space. When the animals were infused with dextrose solution or dextrose albumin solution the distribution of water in extracellular space was altered and the correlations with urinary kallikrein excretion disappear. We conclude that the possible regulation of the components of the extracellular space on urinary kallikrein excretion has not the same importance when water distribution is altered, at least in acute situations.  相似文献   

4.
Adult mammalian brain contains about 20% extracellular space, but fixatives cause the cellular processes to ingest the extracellular fluid, and the space is not preserved in electron micrographs prepared by any of the conventional methods. This distortion can be prevented by replacing part of the sodium chloride in the extracellular fluid by an impermeant solute such as sucrose. To do this, the blood-brain barrier can be opened by vascular perfusion at 300 mmHg pressure, or the barrier can be bypassed by immersion of thin slices of fresh brain in the impermeant solution. In either case, addition of aldehyde fixatives and conventional processing then leads to the preservation of extracellular space in electron micrographs. Both procedures are as easy to use for routine fixation as conventional methods. In well fixed tissue the cellular processes are different in size, shape and electron density from the inflated profiles seen after the ingestion of extracellular fluid that accompanies conventional fixation. Moreover, extracellular space is found to separate widely some cellular elements, while leaving others contiguous.  相似文献   

5.
A method for in vivo evaluation of lipid peroxidation in the extracellular space of anaesthetized rat brain cortex was developed. This method involved the use of microdialysis perfusion and high-performance liquid chromatography. The microdialysates, eluted from implanted probes, were reacted with thiobarbituric acid (TBA) prior to analysis by an HPLC system equipped with a fluorescence detector (excitation and emission wavelengths were 515 and 550 nm, respectively). Lipid peroxidation in the extracellular space was evaluated as the concentration of malondialdehyde, a lipid peroxidation end product which reacts with TBA to form a fluorescent conjugate. Significantly increased production of malondialdehyde following hydrogen peroxide perfusion (0.03%, 0.3% at a flow-rate of 1 μl/min) was observed in the brain cortex of anaesthetized rats.  相似文献   

6.
The fractional composition of extracellular lipids extracted with hexane and ethanol was studied in the yeast Rhodotorula glutinis 35 by thin-layer chromatography. The two extracts of extracellular lipids were found to be similar in composition though differing in the quantitative content of individual fractions. The fractional composition of extracellular lipids differed from that of intracellular lipids. The peculiarity of the fractional composition of extracellular lipids can be accounted for by the specificity of its fatty acid and alcohol composition.  相似文献   

7.
Studies were performed to determine the pH relationships among the extracellular, intracellular, and arterial blood compartments in the brain in vivo. Resolution of the extracellular monophosphate resonance peak from the intracellular peak in 31P nuclear magnetic resonance (NMR) spectra of sheep brain with the calvarium intact enabled pH measurement in these respective compartments. Sheep were then subjected to both hyper- and hypoventilation, which resulted in a wide range of arterial PCO2 and pH values. Linear regression analysis of pH in these compartments yielded slopes of 0.56 +/- 0.05 for extracellular pH (pHe) vs. arterial pH, 0.43 +/- 0.078 for intracellular pH (pHi) vs. pHe, and 0.23 +/- 0.056 for pHi vs. arterial pH. These data indicate that CO2 buffering capacity is different and decreases from the intracellular to extracellular to arterial blood compartments. Separation of the extracellular space from the vascular space may be a function of the blood-brain barrier, which contributes to the buffering capability of the extracellular compartment. A marked decrease in the pH gradient between the extracellular and intracellular space occurs during hypercarbia and may influence mechanisms of central respiratory control.  相似文献   

8.
Zhang XD  Zang YM  Zhou SS  Zang WJ  Yu XJ  Wang YM 《生理学报》2002,54(3):196-200
为探讨C1C-1通道的门控机制,实验应用爪蟾母细胞异源性表达大鼠野生型C1C-1(WT RC1C-1)通道基因,并使用双电极电压钳法记录通道电流。通过改变细胞外氯离子浓度,采用双指数拟合的方法分析通道去激活电流,对其去激活门控动力学特性进行了研究。结果表明,降低细胞外氯离子浓度可增加快速去激活电流成分,减少慢速去激活成分;同时,慢速去激活和快速去激活电流的时间常数都显著减小,说明细胞外氯离子浓度的改变可影响通道去激活动力学参数,从而改变通道的门控过程。  相似文献   

9.
The size of the extracellular space in the isolated midgut ofManduca sexta measured statically with labeled sucrose and with labeled inulin was 48 and 50 percent of tissue water respectively. Both labeled sulfate and labeled mannitol yielded loading spaces which approached the volume of the tissue water with increasing pulse time and are not valid markers of the extracellular space. A washout method yielded unreliable values for the sucrose and inulin spaces and its use cannot be justified using presently available midgut chamber designs. Values of the sucrose space measured statistically in this study and other studies using different Lepidopteran larvae and different perfusion chambers range from 42 to 48 percent of the tissue water. Agreement between published values of the sulfate space and these values of the sucrose space is fortuitous, the labeling pulses being short enough to yield approximately half saturation of the actual sulfate loading space.  相似文献   

10.
Systemic administration of direct and indirect dopamine agonists resulted in increased extracellular ascorbic acid levels in the striatum and, to a lesser degree, in the nucleus accumbens as measured by in vivo voltammetry. Intraperitoneal d-amphetamine sulfate (5mg/kg) increased ascorbate concentrations in striatal extracellular fluid. Amphetamine also increased extracellular ascorbate levels in the nucleus accumbens although more gradually and to a lesser extent. Intraperitoneal phenethylamine hydrochloride (20 mg/kg) following pargyline hydrochloride pretreatment (20 mg/kg) increased extracellular ascorbate levels in the striatum significantly above the small increase seen in the nucleus accumbens. The direct acting dopamine agonists Ly-141865 and Ly-163502 when given i.p. at 1 mg/kg, resulted in increased extracellular ascorbate concentrations in both brain areas, again with a significantly greater effect in the striatum. These results indicate that brain extracellular ascorbate levels can be modulated by dopaminergic neuro-transmission and that this modulation is quantitatively different in different dopamine-containing brain structures.  相似文献   

11.
Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises ∼20% of brain parenchymal volume and contains cell-cell gaps ∼50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (α), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (Do/D). Experimental Do/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. Do/D for the small solute calcein in different regions of brain was in the range 3.0-4.1, and increased with brain cell swelling after water intoxication. Do/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured Do/D using realistic α, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted Do/D for different solute sizes. Also, the modeling showed unanticipated effects on Do/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS.  相似文献   

12.
Brain extracellular matrix   总被引:8,自引:2,他引:6  
Ruoslahti  Erkki 《Glycobiology》1996,6(5):489-492
The extracellular matrix of the adult brain tissue has a uniquecomposition. The striking feature of this matrix is the prominenceof lecticans, proteoglycans that contain a lectin domain anda hyaluronic acid-binding domain. Hyaluronic acid and tenascinfamily adhesive/anti-adhesive proteins are also abundant. Matrixproteins common in other tissues are nearly absent in adultbrain. The brain extracellular matrix appears to have trophiceffects on neuronal cells and affect neurite outgrowth. Theunique composition of this matrix may be responsible for theresistance of brain tissue toward invasion by tumors of non-neuronalorigin. extracellular matrix lectican versican review  相似文献   

13.
Ion-selective microelectrode measurements of molecular diffusion have provided unique information about the structural characteristics of the extracellular compartment of brain tissue. Magnetic resonance (MR) techniques can also be used to perform diffusion measurements in living tissue in situ. In MR applications, the challenge to study a particular physiological compartment lies in achieving the appropriate specificity in the experimentally-observed MR signal, and many strategies have been used to provide measurements that reflect molecular diffusion within the extracellular space. This review describes how magnetic resonance and microelectrode diffusion measurements are performed, and applications using the MR technique are summarized. Comparisons of experimental results obtained from the two techniques indicate that their use in combination may further augment what is known about extracellular space structure.  相似文献   

14.
The introduction of new paramagnetic shift reagents in the nuclear magnetic resonance (NMR) method has made it possible to distinguish intra- and extracellular ions in tissues or organs in vitro. We measured the intra- and extracellular 23Na and 1H in vivo in the gerbil brain and skeletal muscle by NMR spectroscopy employing the shift reagent, dysprosium triethylenetetraminehexaacetate (Dy[TTHA]3-). Without Dy(TTHA)3-, the 23Na and 1H signals were seen only as single peaks, but gradual intravenous infusion of Dy(TTHA)3- separated these signals into two peaks, respectively. The unshifted peaks reflected the intracellular 23Na and 1H signals, while the shifted peaks reflected the extracellular signals. In the brain spectra, an additional small peak, which represented intravascular signals, was detected and its intensity increased after injection of papaverine hydrochloride. The present method is advantageous over the microelectrode technique because of its nondestructiveness and its capability for obtaining intra- and extracellular volume information from measurements of the 1H spectra, the peaks of which reflect the intra- and extracellular water amounts. The intracellular Na+ increase associating with increased cellular volume after ouabain in the muscle was clearly visualized by this method. The technique is clearly of use for physiological and pathophysiological studies of organs.  相似文献   

15.
Tortuosity of the extracellular space describes hindrance posed to the diffusion process by a geometrically complex medium in comparison to an environment free of any obstacles. Calculating tortuosity in biologically relevant geometries is difficult. Yet this parameter has proved very important for many processes in the brain, ranging from ischemia and osmotic stress to delivery of nutrients and drugs. It is also significant for interpretation of the diffusion-weighted magnetic resonance data. We use a volume-averaging procedure to obtain a general expression for tortuosity in a complex environment. A simple approximation then leads to tortuosity estimates in a number of two-dimensional (2D) and three-dimensional (3D) geometries characterized by narrow pathways between the cellular elements. It also explains the counterintuitive fact of lower diffusion hindrance in a 3D environment. Comparison with Monte Carlo numerical simulations shows that the model gives reasonable tortuosity estimates for a number of regular and randomized 2D and 3D geometries. Importantly, it is shown that addition of dead-end pores increases tortuosity in proportion to the square root of enlarged total extracellular volume fraction. This conclusion is further supported by the previously described tortuosity decrease in ischemic brain slices where dead-end pores were partially occluded by large macromolecules introduced into the extracellular space.  相似文献   

16.
Extracellular local field potentials are usually modeled as arising from a set of current sources embedded in a homogeneous extracellular medium. Although this formalism can successfully model several properties of extracellular local field potentials, it does not account for their frequency-dependent attenuation with distance, a property essential to correctly model extracellular spikes. Here we derive expressions for the extracellular potential that include this frequency-dependent attenuation. We first show that, if the extracellular conductivity is nonhomogeneous, there is induction of nonhomogeneous charge densities that may result in a low-pass filter. We next derive a simplified model consisting of a punctual (or spherical) current source with spherically symmetric conductivity/permittivity gradients around the source. We analyze the effect of different radial profiles of conductivity and permittivity on the frequency-filtering behavior of this model. We show that this simple model generally displays low-pass filtering behavior, in which fast electrical events (such as Na(+)-mediated action potentials) attenuate very steeply with distance, whereas slower (K(+)-mediated) events propagate over larger distances in extracellular space, in qualitative agreement with experimental observations. This simple model can be used to obtain frequency-dependent extracellular field potentials without taking into account explicitly the complex folding of extracellular space.  相似文献   

17.
Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs) via immunocytochemistry, atomic force microscopy (AFM), and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.  相似文献   

18.
The extracellular space (ECS) of the brain is a major channel for intercellular communication, nutrient and metabolite trafficking, and drug delivery. The dominant transport mechanism is diffusion, which is governed by two structural parameters, tortuosity and volume fraction. Tortuosity (lambda) represents the hindrance imposed on the diffusing molecules by the tissue in comparison with an obstacle-free medium, while volume fraction (alpha) is the proportion of tissue volume occupied by the ECS. Diffusion of small ECS markers can be exploited to measure lambda and alpha. In healthy brain tissue, lambda is about 1.6 but increases to 1.9-2.0 in pathologies that involve cellular swelling. Previously it was thought that lambda could be explained by the circumnavigation of diffusing molecules around cells. Numerical models of assemblies of convex cells, however, give an upper limit of about 1.23 for lambda. Therefore, additional factors must be responsible for lambda in brain. In principle, two mechanisms could account for the measured value: a more complex ECS geometry or an extracellular macromolecular matrix. Here we review recent work in ischemic tissue suggesting concave geometrical formations, dead-space microdomains, as a major determinant of extracellular tortuosity. A theoretical model of lambda based on diffusion dwell times supports this hypothesis and predicts that, in ischemia, dead spaces occupy approximately 60% of ECS volume fraction leaving only approximately 40% for well-connected channels. It is further proposed that dead spaces are present in healthy brain tissue where they constitute about 40% of alpha. The presence of dead-space microdomains in the ECS implies microscopic heterogeneity of extracellular channels with fundamental implications for molecular transport in brain.  相似文献   

19.
[U-14C]Sucrose and D-[1-14C]mannitol were used to determine the tritiated water space of human spermatozoa to validate these compounds as markers for the extracellular space. Calculations based on 0.03 mM-[U-14C]sucrose gave a negative water space. The water space estimated with 0.03 mM-D[1-14C]mannitol was unstable but a stable result was obtained with 0.3 mM-D-[1-14C]mannitol in incubations up to 2 h. The mean water space was 2.21 +/- 0.106 microliters/10(8) spermatozoa (mean +/- s.e.m. for 6 batches of pooled semen). The water space was decreased or abolished by Triton X-100, cold shock, sonication or hypotonic treatment. The water space responded to changes in the osmolarity of the medium by increasing in dilute media. It is concluded that mannitol is an effective extracellular marker for human spermatozoa if concentrations greater than or equal to 0.3 mM are used. When the kinetics of the uptake of 2-deoxyglucose by the spermatozoa were studied by using mannitol as an extracellular marker, the transport was saturable and was inhibited by cytochalasin B. The Km was 1.6 +/- 0.33 mM and the Vmax was 4.2 +/- 0.52 nmol/10(8) spermatozoa/10 sec (mean +/- s.e.m., n = 4).  相似文献   

20.
Abstract: Transport and permeability properties of the blood-brain and blood-CSF barriers were determined by kinetic analysis of radioisotope uptake from the plasma into the CNS of the adult rat. Cerebral cortex and cerebellum uptake curves for 36Cl and 22Na were resolved into two components. The fast component (t½ 0.02–0.05 h, fractional volume 0.04–0.08) is comprised of the vascular compartment and a small perivascular space whereas the slow component (t½ 1.06–1.69 h, fractional volume 0.92–0.96) represents isotope movement across the blood-brain barrier into the brain extracellular and cellular compartments. Uptake curves of both 36Cl and 22Na into the CSF were also resolved into two components, a fast component (t½ 0.18 h, fractional volume 0.24) and a slow component (t½ 1.2 h, fractional volume 0.76). Evidence suggests that the fast component represents isotope movement across the blood-CSF barrier, i.e., the choroid plexuses, whereas the CSF slow component probably reflects isotope penetration primarily from the brain extracellular fluid into the CSF. The extracellular fluid volume of the cerebral cortex and cerebellum was estimated as ?13% from the initial slope of the curve of brain space versus CSF space curve for both 36Cl and 22Na. Like the choroid plexuses, the glial cell compartment of the brain appears to accumulate Cl from 2 to 6 times that predicted for passive distribution. The relative permeability of the blood-CSF and blood-brain barriers to 36Cl, 22Na, and [3H]mannitol was determined by calculating permeability surface-area products (PA). Analysis of the PA values for all three isotopes indicates that the effective permeability of the choroidal epithelium (blood/CSF barrier) is significantly greater than that of the capillary endothelium in the cerebral cortex and cerebellum (blood-brain barrier).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号