首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elafin is a potent inhibitor of proteinase 3   总被引:4,自引:0,他引:4  
Elafin, a human skin derived inhibitor of human leukocyte elastase, was tested for inhibitory activity against proteinase 3, an elastin degrading proteinase of neutrophils. The inhibitory activity of elafin was compared with antileukoprotease and eglin C. Elafin proved to be a potent inhibitor of elastin-FITC degradation showing an IC 50 of 9.5 x 10(-9) M. Potency was found to be more than 100-fold higher as compared with antileukoprotease and eglin C.  相似文献   

2.
Recombinant eglin c is a potent reversible inhibitor of human pancreatic elastase. At pH 7.4 and 25 degrees C, kass. = 7.3 x 10(5) M-1.s-1, kdiss. = 2.7 x 10(-4) s-1 and Ki = 3.7 x 10(-10) M. Stopped-flow kinetic indicate that the formation of the stable enzyme-inhibitor complex is not preceded by a fast pre-equilibrium complex or that the latter has a dissociation constant greater than 0.3 microM. The elastase-eglin c complex is much less stable at pH 5.0 and 25 degrees C, where kdiss. = 1.1 x 10(-2) s-1 and Ki = 7.3 x 10(-8) M. At pH 7.4 the activation energy for kass. is 43.9 kJ.mol-1 (10.5 kcal.mol-1). The kass. increases between pH 5.0 and 8.0 and remains essentially constant up to pH 9.0. This pH-dependence could not be described by a simple ionization curve. Both alpha 2-macroglobulin and alpha 1-proteinase inhibitor are able to dissociate the elastase-eglin c complex, as evidenced by measurement of the enzymic activity of alpha 2-macroglobulin-bound elastase or by polyacrylamide-gel electrophoresis of mixtures of alpha 1-proteinase inhibitor and elastase-eglin c complex. The rough estimate of kdiss. obtained with the alpha 2-macroglobulin dissociation experiment (1.6 x 10(-4) s-1) was of the same order of magnitude as the constant measured with the progress curve method. Eglin c strongly inhibits the solubilization of human aorta elastin by human pancreatic elastase. The extent of inhibition is the same whether elastase is added to a suspension of elastin and eglin c or whether elastase is preincubated with elastin for 3 min before addition of eglin c. However, the efficiency of the inhibitor sharply decreases if elastase is reacted with elastin for more prolonged periods.  相似文献   

3.
I Posner  C S Wang  W J McConathy 《Biochemistry》1983,22(17):4041-4047
The kinetics of bovine milk lipoprotein lipase (LPL) were studied in order to determine the reaction mechanism of this enzyme. Reaction velocities were determined at varying concentrations of emulsified trioleoylglycerol (TG) and different fixed concentrations of apolipoprotein C-II (C-II) or at varying C-II concentrations and different fixed concentrations of TG. Neither the apparent Km(TG) nor the apparent Km(C-II) was affected by varying the concentrations of C-II or TG, respectively. However, C-II increased the apparent Vmax for the enzyme about 20-fold. The following kinetic parameters were calculated from Lineweaver-Burk plots: Km(C-II) = 2.5 X 10(-8) M and Km (TG) = 2.5 X 10(-3) M. The dissociation constant (KS) of the enzyme-TG binary complex was determined from Scatchard plots to be 7.6 X 10(-8) M. Heparin was found to be a competitive dead-end inhibitor against both TG and C-II. Tricapryloylglycerol represented a competitive inhibitor against TG but a noncompetitive inhibitor against C-II. C-II was shown to interact with dansylated bovine milk LPL, increasing its fluorescent emission by inducing a conformational change in the enzyme. Based on these studies, it was concluded that the LPL-catalyzed reaction follows a random, bireactant, rapid-equilibrium mechanism and the role of C-II in the activation process involves an increase in the catalytic rate constant (Kp) resulting from conformational changes of LPL induced by C-II.  相似文献   

4.
We have investigated the inhibition of human leukocyte elastase and cathepsin G by recombinant Eglin c under near physiological conditions. The association rate constants k on of Eglin c for elastase and cathepsin G were 1.3 X 10(7) M-1 s-1 and 2 X 10(6) M-1 s-1, respectively. Under identical conditions, the k on for the association of human plasma alpha 1-proteinase inhibitor with the two leukocproteinases were 2.4 X 10(7) M-1 s-1 and 10(6) M-1 s-1, respectively. The consistency of these data could be verified using a set of competition experiments. The elastase-Eglin c interaction was studied in greater detail. The dissociation rate constant k off was determined by trapping of free elastase from an equilibrium mixture of elastase and Eglin c with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The rate of dissociation was very low (k off = 3.5 X 10(-5) s-1). The calculated equilibrium dissociation constant of the complex, Ki(calc) = k off/k on, was found to be 2.7 X 10(-12) M. Ki was also measured by adding elastase to mixtures of Eglin c and substrate and determining the steady-state rates of substrate hydrolysis. The Ki determined from these experiments (7.5 X 10(-11) M) was significantly higher than Ki(calc). This discrepancy might be explained by assuming that the interaction of Eglin c with elastase involves two steps: a fast binding reaction followed by a slow isomerization step. From the above kinetic constants it may be inferred that at a therapeutic concentration of 5 X 10(-7) M, Eglin c will inhibit leukocyte elastase in one second and will bind this enzyme in a "pseudo-irreversible" manner.  相似文献   

5.
Liu ZX  Fei H  Chi CW 《FEBS letters》2004,556(1-3):116-120
Eglin c with mutants L45R and D42R at the P(1) and P(4) positions has been reported to become a stable inhibitor toward the proprotein convertases (PC), furin and kexin, with a K(i) of 2.3x10(-8) and 1.3x10(-10) M, respectively. The mutant was further engineered at the P(2)'-P(4)' positions to create a more potent and selective inhibitor for each enzyme. The residue Asp at P(1)' which is crucial for stabilizing the conformation of eglin c remained unchanged. The eglin c mutants cloned into the vector pGEX-2T and expressed in Escherichia coli (DH5alpha) were purified to homogeneity, and their inhibitory activities toward the purified recombinant furin and kexin were examined. The results showed that (1) Leu47 at P(2)' replaced with either a positively or negatively charged residue resulted in a decrease in inhibitory activities to both enzymes; (2) the replacement of Arg with Asp at P(3)' was favorable for inhibiting furin with a K(i) of 7.8 x 10(-9) M, but not for inhibiting kexin; (3) the replacement of Tyr with Glu at P(4)' increased the inhibitory activity to kexin with a K(i) of 3 x 10(-11) M, but was almost without any influence on furin inhibition. It was indicated that the inhibitory specificity of eglin c could be changed from inhibiting elastase to inhibiting PCs by site-directed mutation at the P positions, while the inhibitory selectivity to furin or kexin could be optimized by mutation at the P' positions.  相似文献   

6.
The crystal structure of the complex between bovine alpha-chymotrypsin and the leech (Hirudo medicinalis) protein proteinase inhibitor eglin c has been refined at 2.0 A resolution to a crystallographic R-factor of 0.167. The structure of the complex includes 2290 protein and 143 solvent atoms. Eglin c is bound to the cognate enzyme through interactions involving 11 residues of the inhibitor (sites P5-P4' in the reactive site loop, P10' and P23') and 17 residues from chymotrypsin. Binding of eglin c to the enzyme causes a contained hinge-bending movement around residues P4 and P4' of the inhibitor. The tertiary structure of chymotrypsin is little affected, with the exception of the 10-13 region, where an ordered structure for the polypeptide chain is observed. The overall binding mode is consistent with those found in other serine proteinase-protein-inhibitor complexes, including those from different inhibition families. Contained, but significant differences are observed in the establishment of intramolecular hydrogen bonds and polar interactions stabilizing the structure of the intact inhibitor, if the structure of eglin c in its complex with chymotrypsin is compared with that of other eglin c-serine proteinase complexes.  相似文献   

7.
The inhibition of human chymase by the protease inhibitor alpha(2)-macroglobulin (alpha2M) was investigated. Titration of chymase hydrolytic activity with purified alpha2M showed that approximately 1 mol of alpha2M tetramer inhibits 1 mol of chymase. Inhibition was associated with cleavage of the alpha2M bait region and formation of a 200-kDa covalent complex. NH(2)-terminal sequencing of chymase-treated alpha2M revealed cleavage at bonds Phe684-Tyr685 and Tyr685-Glu686 of the bait region. alpha2M pretreated with methylamine, an inactivator of alpha2M, did not inhibit chymase. The apparent second-order rate constant for inhibition (k(ass)) was 5 x 10(6) M(-1) s(-1), making alpha2M the most efficient natural protein protease inhibitor of chymase so far described. The k(ass) value for inhibition was decreased approximately 10-fold by addition of heparin, a glycosaminoglycan produced by mast cells that binds to chymase. Heparin did not change significantly the stoichiometry of inhibition or block covalent complex formation. These results indicate that alpha2M is an important inhibitor to consider in the regulation of human chymase.  相似文献   

8.
Mechanism of inhibition of activated protein C by protein C inhibitor   总被引:6,自引:0,他引:6  
Protein C inhibitor isolated from human plasma inhibited thrombin, factor Xa, trypsin and chymotrypsin as well as activated protein C, but had very little effect on urokinase and plasmin. The inhibition constants (K1) of protein C inhibitor for activated protein C, thrombin and factor Xa were 5.6 X 10(-8) M, 6.7 X 10(-8) M and 3.1 X 10(-7) M, respectively. The second-order rate constant for inhibition of activated protein C by the inhibitor increased about 30-fold in the presence of an optimal heparin concentration (5-10 units/ml). The inhibition of activated protein C by plasma protein C inhibitor was also accelerated by heparin. When activated protein C (Mr = 62,000) was incubated with protein C inhibitor (Mr = 57,000), enzyme-inhibitor complexes with apparent Mr = 102,000 and 88,000 were observed in the nonreduced and the reduced samples, respectively, on SDS-polyacrylamide gel electrophoresis. In addition to these complexes, a band of unbound enzyme and a band with Mr = 54,000 were detected. When 125I-labeled protein C inhibitor was exposed to activated protein C, the inhibitor band was converted to bands with apparent Mr = 102,000 and 54,000 in the nonreduced samples, as determined by autoradiography after gel electrophoresis in SDS. The band with Mr = 54,000 also appeared when the inhibitor reacted with other serine proteases. The activated protein C was released from the inactive complex by treatment with 1 M ammonia or hydroxylamine. This phenomenon was found by SDS-polyacrylamide gel electrophoresis to represent the dissociation of the enzyme-inhibitor complex by ammonia or hydroxylamine into the free enzyme and the proteolytically modified inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A nuclease inhibitor found in the mycelia of Aspergillus oryzae has been purified 158,000-fold by ammonium sulfate precipitation, chromatography on Sephadex G-75, DEAE-Sephadex A-50 and Bio-Gel p-60 columns, preparative disc electrophoresis on acrylamide gel, and electrofocusing in ampholite. The purified inhibitor is nearly homogeneous as judged by disc electrophoresis. It shows a typical ultraviolet absorption curve for protein, and the inhibitory activity is inactivated by chymotrypsin. The inhibitor and nuclease O (EC 3.1.4.9, a crystalline enzyme from the mycelia of the same organism) form a stable enzyme inhibitor complex. The molecular weights of nuclease O, the inhibitor and the enzyme inhibitor complex are estimated to be 46,000, 22,000 and 73,000 respectively, by Sephadex G-100 gel filtration. The isoelectric points of the enzyme and the inhibitor are 10.0 and 4.09, respectively, as determined by electrofocusing in ampholite. The inhibition is noncompetitive, and the inhibitor constant (K1) is 3.2 X 10(-12) M, whereas the Michaelis constant (Km) for DNA is 2.2 X 10(-8) M. The inactive enzyme-inhibitor complex is reactivated by chymotrypsin through inactivation of the inhibitor. The reactivated enzyme can be inactivated again by the inhibitor, which shows that desensitization of the enzyme does not occur by the action of chymotrypsin.  相似文献   

10.
The rate constants for the inhibition of human leucocyte elastase by eglin from the leech Hirudo medicinalis were determined by using a pre-steady-state kinetic approach. kon and koff for complex-formation and dissociation were 1 X 10(6)M-1 X S-1 and 8 X 10(-4)S-1 respectively. Ki was calculated as the ratio koff/kon = 8 X 10(-10)M, the binding of eglin to elastase was reversible and the inhibition mechanism was of the fully competitive type. The mechanistic properties of the system and the biological significance of the rate constants are discussed.  相似文献   

11.
We have examined the effects of folate compounds and the folate analog amethopterin (methotrexate) as inhibitors of mammalian xanthine oxidase and have found that they offer potent inhibition of the enzyme. We have compared the inhibitory potency of folic acid and its coenzyme derivative tetrahydrofolic acid to that of allopurinol, a known inhibitor of xanthine oxidase, and have demonstrated that folic acid and tetrahydrofolic acid are severalfold more potent than allopurinol as inhibitors of xanthine oxidase. Comparative inhibition constants calculated were 5.0 X 10(-7) M for folic acid. 1.25 X 10(-6) M for tetrahydrofolic acid, and 4.88 X 10(-6) M for allopurinol. Incubation of xanthine oxidase with folic acid at a concentration of 10(-6) M abolished 94% of the enzymic activity within 1 min of incubation with the enzyme. At the same concentration, allopurinol was almost ineffective as an inhibitor of xanthine oxidase. The substrate xanthine protected the enzyme against total inhibition by folic acid. Reversibility of the enzymic inhibition by folic acid was demonstrated. Folic acid-inactivated enzyme was totally regenerated either by filtration through Sephadex G-200 or by precipitation with ammonium sulfate. 2-Amino-4-hydroxypteridine was a poor substrate for the enzyme but a potent inhibitor for the oxidation of xanthine by the enzyme. The inhibition constant calculated was 1.50 X 10(-6) M. In the presence of an excess of xanthine oxidase, neither folic acid nor tetrahydrofolic acid and allopurinol exhibited any change in intensity of their absorbance or in the wavelength of their maximal absorbance that might have been suggestive of substrate utility. The folate analog amethopterin was also determined a potent inhibitor of mammalian xanthine oxidase. The inhibition constant calculated was 3.0 X 10(-5) M.  相似文献   

12.
Complex formation between two new double-headed protease inhibitors from black-eyed peas, trypsin-chymotrypsin inhibitor (BEPCI) and a trypsin inhibitor (BEPTI), and trypsin and chymotrypsin was investigated in the concentration range from 10-8 to 10-4 M by titration experiments and gel filtration chromatography. Dissociation equilibrium constants measured for complexes detected in the titration experiments range from as large as 10-8 M for trypsin bound nonspecifically to the chymotrypsin site of BEPCI to as small as 10-18 M2 for the interaction of BEPCI with chymotrypsin. The identity and stoichiometry of complexes detected during titration experiments were confirmed by gel filtration of mixtures of native and fluorescently labeled proteases and inhibitors. Half-site reactivity is observed in the formation of complexes between BEPCI or BEPTI and trypsin and chymotrypsin at all experimentally practical concentrations. The double-headed complex contains 1 molecule each of trypsin, chymotrypsin, and BEPCI dimer. The bimolecular rate constants of complex formation between trypsin or chymotrypsin and isolated BEPCI oligomers range from 1.8 X 10(5) M-1 S-1 for chymotrypsin and BEPCI monomer to 4.4 X 10(7) M-1 S-1 for trypsin and the rapidly equilibrating BEPCI dimer. The estimated rate constants for the dissociation of half-site-liganded dimer complexes and liganded monomer complexes range from 7.5 X 10-3 S-1 for the trypsin-liganded BEPCI monomer complex to 1.6 X 10-6 S-1 for the chymotrypsin-liganded BEPCI dimer complex.  相似文献   

13.
The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the recombinant proteinase inhibitor eglin c (eglin c), of the soybean Bowman-Birk proteinase inhibitor (BBI) and of its chymotrypsin and trypsin inhibiting fragments (F-C and F-T, respectively) to Leu-proteinase, the leucine specific serine proteinase from spinach (Spinacia oleracea L.) leaves, has been investigated. On lowering the pH from 9.5 to 4.5, values of Ka (at 21 degrees C) for complex formation decrease thus reflecting the acidic pK-shift of the hystidyl catalytic residue from approximately 6.9, in the free Leu-proteinase, to approximately 5.1, in the enzyme: inhibitor adducts. At pH 8.0, values of the apparent thermodynamic parameters for the proteinase:inhibitor complex formation are: Leu-proteinase:eglin c-Ka = 2.2 x 10(11) M-1, delta G degree = -64 kJ/mol, delta H degree = +5.9 kJ/mol, and delta S degree = +240 kJ/molK; Leu-proteinase:BBI-Ka = 3.2 x 10(10) M-1, delta G degree = -59 kJ/mol, delta H degree = +8.8 kJ/mol, and delta S degree = +230 J/molK; and Leu-proteinase:F-C-Ka = 1.1 x 10(6) M-1, delta G degree = -34 kJ/mol, delta H degree = +18 J/mol, and delta S degree = +180 J/molK (values of Ka, delta G degree and delta S degree were obtained at 21.0 degrees C; values of delta H degree were temperature-independent over the range explored, i.e. between 10.0 degrees C and 40.0 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The putative inhibitor domain of Alzheimer's disease amyloid protein precursor was purified from E. coli containing a synthetic gene encoding the Kunitz domain. The purified protein (A4 inhibitor) inhibited the activity of trypsin, forming a 1:1 molar complex with the enzyme. It also strongly inhibited plasmin (Ki = 7.5 x 10(-11) M) from human serum and tryptase (Ki = 2.2 x 10(-10) M) from rat mast cells (tryptase M). In addition, it inhibited rat pancreatic trypsin, alpha-chymotrypsin and kallikrein and human serum kallikrein, but did not inhibit rat chymase, pancreatic elastase, alpha-thrombin, urokinase, papain or cathepsin B.  相似文献   

15.
Interaction between 1,4-thiazine derivatives and D-amino-acid oxidase   总被引:1,自引:0,他引:1  
Aminoethylcysteine-ketimine (2H-1,4-thiazine-5,6-dihydro-3-carboxylic acid) strongly inhibits D-amino-acid oxidase (D-amino-acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3). The inhibition is purely competitive (Ki = 3.3 X 10(-7) M). Aminoethylcysteine-ketimine modifies the visible spectrum of the enzyme: the absorption maxima of bound FAD shift from 375-455 nm to 385-445 nm with a definite shoulder at 465 nm; the appearance of a large absorption band centered at 750 nm may be due to a charge-transfer complex formation. The dissociation constant for the aminoethylcysteine-ketimine-enzyme complex, calculated by a photometric procedure (4 X 10(-7) M), is in good agreement with kinetic data. The dicarboxylic analogue of this inhibitor (lanthionine-ketimine) is ineffective in D-amino-acid oxidase inhibition and does not produce any spectral modification of the enzyme. These results confirm structural requirements for D-amino-acid oxidase inhibitor reported by other researchers. Ketimine reduced forms (thiomorpholine-2-carboxylic acid and thiomorpholine-2,6-dicarboxylic acid) are chemically synthesized and checked as D-amino-acid oxidase substrates: only thiomorpholine-2-carboxylic acid is oxidized to aminoethylcysteine-ketimine (Km = 2 X 10(-4) M).  相似文献   

16.
Leupeptin (acyl peptidyl-L-argininal) is a potent inhibitor of trypsin and related proteases. We analyzed the association of leupeptim with bovine trypsin kinetically, assuming that it proceeds by a pathway which involves two steps: E + I in equilibrium K1 Complex I k-2 in equilibrium k+2 Complex II. The observed dissociation constant (K1) for the first step was 1.24 X 10(-3) M (at pH 8.2 15 degrees C) and the two first-order rate constants (k+2 and k-2) were 166 s-1 and 1.75 X 10(-3.s-1, respectively (at pH 8.2, 15 degrees C). The dissociation constant (Kd) for the whole process was calculated from these parameters to be 1.34 X 10(-8) M. This value is compatible with that determined directly by an independent static method (2.36 X 10(-8) M). We also measured Kd for the leupeptine complex of anhydrotrypsin, a trypsin derivative in which the active-site hydroxyl group is missing. The observed value was about 5 orders of magnitude larger than Kd and was rather similar to K1 in native trypsin. A elupeptin isomer which contains a D-argininal residue did not show strong affinity towards trypsin. These findings suggest that complex II consists of a covalent hemiacetal adduct formed between the serine hydroxyl group in the enzyme active site and the aldehyde group in the inhibitor. The pH dependencies of the dissociation constant and other parameters show that deprotonation of the charge-relay sustem in the active site is important for the formation and stabilization of complex II.  相似文献   

17.
蛋白质前体加工酶参与许多重要蛋白质闪体的加工成熟过程,哺乳动物来源的furin和酵母中的kexin是该家族的重要成员。首先人工合成了编码枯草杆菌蛋白酶抑制剂eglin C的基因片段,组装后在大肠杆菌中得到表达。以定点突变方法在野生型eglin C抑制活性中心的P1、P2和P4位引入碱性氨基酸残基可以将其改造为很强的furin抑制剂(Ki约10^-9mol/L),和kexin抑制剂(Ki约10^-11mol/L)。同时根据枯草杆菌蛋白酶和eglin C复合物的晶体结构,计算机同源模建了前体加工酶与eglin C突变体结构之间的相互作用,并结合实验数据得到以下结果:(1)P1位引入的碱性残基是该抑制剂活力的前提;(2)P4位碱性残基的引入可以极大地提高抑制剂活力约两个数量级;(3)P2 的碱性残基将有效提高抑制剂的活力。然而同时可以破坏抑制剂本身的稳定性。(4)野生型P3位的疏水性残基参与抑制剂活性环附近疏水核心的构成。  相似文献   

18.
Phosphoglycerate mutase has been purified from methanol-grown Hyphomicrobium X and Pseudomonas AMI by acid precipitation, heat treatment, ammonium sulphate fractionation, Sephadex G-50 gel filtration and DEAE-cellulose column chromatography. The purification attained using the Hyphomicrobium X extract was 72-fold, and using the Pseudomonas AMI extract, 140-fold. The enzyme purity, as shown by analytical polyacrylamide gel electrophoresis, was 50% from Hyphomicrobium X and 40% from Pseudomonas AMI. The enzyme activity was associated with one band. The purified preparations did not contain detectable amounts of phosphoglycerate kinase, phosphopyruvate hydratase, phosphoglycerate dehydrogenase or glycerate kinase activity. The molecular weight of the enzymic preparation was 32000 +/- 3000. The enzyme from both organisms was stable at low temperatures and, in the presence of 2,3-diphosphoglyceric acid, could withstand exposure to high temperatures. The enzyme from Pseudomonas AMI has a broad pH optimum at 7-0 to 7-6 whilst the enzyme from Hyphomicrobium X has an optimal activity at pH 7-3. The cofactor 2,3-diphosphoglyceric acid was required for maximum enzyme activity and high concentrations of 2-phosphoglyceric acid were inhibitory. The Km values for the Hyphomicrobium X enzyme were: 3-phosphoglyceric acid, 6-0 X 10(-3) M: 2-phosphoglyceric acid, 6-9 X 10(-4) M; 2,3-diphosphoglyceric acid, 8-0 X 10(-6) M; and for the Pseudomonas AMI ENzyme: 3-4 X 10(-3) M, 3-7 X 10(-4) M and 10 X 10(-6) M respectively. The equilibrium constant for the reaction was 11-3 +/- 2-5 in the direction of 2-phosphoglyceric acid to 3-phosphoglyceric acid and 0-09 +/- 0-02 in the reverse direction. The standard free energy for the reaction proceeding from 2-phosphoglyceric acid to 3-phosphoglyceric acid was -5-84 kJ mol(-1) and in the reverse direction +5-81 kJ mol(-1).  相似文献   

19.
S W King  V R Lum  T H Fife 《Biochemistry》1987,26(8):2294-2300
The carbamate ester N-(phenoxycarbonyl)-L-phenylalanine binds well to carboxypeptidase A in the manner of peptide substrates. The ester exhibits linear competitive inhibition toward carboxypeptidase A catalyzed hydrolysis of the amide hippuryl-L-phenylalanine (Ki = 1.0 X 10(-3) M at pH 7.5) and linear noncompetitive inhibition toward hydrolysis of the specific ester substrate O-hippuryl-L-beta-phenyllactate (Ki = 1.4 X 10(-3) M at pH 7.5). Linear inhibition shows that only one molecule of inhibitor is bound per active site at pH 7.5. The hydrolysis of the carbamate ester is not affected by the presence of 10(-8)-10(-9) M enzyme (the concentrations employed in inhibition experiments), but at an enzyme concentration of 3 X 10(-6) M catalysis can be detected. The value of kcat at 30 degrees C, mu = 0.5 M, and pH 7.45 is 0.25 s-1, and Km is 1.5 X 10(-3) M. The near identity of Km and Ki shows that Km is a dissociation constant. Substrate inhibition can be detected at pH less than 7 but not at pH values above 7, which suggests that a conformational change is occurring near that pH. The analogous carbonate ester O-(phenoxycarbonyl)-L-beta-phenyllactic acid is also a substrate for the enzyme. The Km is pH independent from pH 6.5 to 9 and has the value of 7.6 X 10(-5) M in that pH region. The rate constant kcat is pH independent from pH 8 to 10 at 30 degrees C (mu = 0.5 M) with a limiting value of 1.60 s-1. Modification of the carboxyl group of glutamic acid-270 to the methoxyamide strongly inhibits the hydrolysis of O-(phenoxycarbonyl)-L-beta-phenyllactic acid. Binding of beta-phenyllactate esters and phenylalanine amides must occur in different subsites, but the ratios of kcat and kcat/Km for the structural change from hippuryl to phenoxy in each series are closely similar, which suggests that the rate-determining steps are mechanistically similar.  相似文献   

20.
Modified trypsin kallikrein inhibitor (I*), with the reactive-site peptide bond Lys-15--Ala-16 split, reacts with alpha-chymotrypsin (E) via an intermediate X to the stable tetrahedral complex C:E + I in equilibrium X leads to C. Formation X constitutes a fast pre-equilibrium (equilibrium constant Kx = 7 X 10(-5) M, association rate constant kx = 4 X 10(3)M-1s-1) to the slow reaction X leads to C (rate constant kc = 2 X 10(-3) s-1), all values at pH 7.5. No intermediate X is observed when alpha-chymotrypsin reacts with I*-OMe in which the carboxyl group of Lys-15 is esterified by methanol. This observation as well as the different pH dependence of the overall association rate constants in the case of I* and I*-OMe indicate tha formation of X precedes formation of the acyl enzyme in the catalytic pathway. The data are compared to the similar results obtained with beta-trypsin and I* or I*-OMe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号