首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of peroxisomal beta-oxidation were measured as fatty acyl-CoA-dependent NAD+ reduction, by using solubilized peroxisomal fractions isolated from livers of rats treated with clofibrate. Medium- to long-chain saturated fatty acyl-CoA esters as well as long-chain polyunsaturated fatty acyl-CoA esters were used. Peroxisomal beta-oxidation shows optimal specificity towards long-chain polyunsaturated acyl-CoA esters. Eicosa-8,11,14-trienoyl-CoA, eicosa-11,14,17-trienoyl-CoA and docosa-7,10,13,16-tetraenoyl-CoA all gave Vmax. values of about 150% of that obtained with palmitoyl-CoA. The Km values obtained with these fatty acyl-CoA esters were 17 +/- 6, 13 +/- 4 and 22 +/- 3 microM respectively, which are in the same range as the value for palmitoyl-CoA (13.8 +/- 1 microM). Myristoyl-CoA gave the higher Vmax. (110% of the palmitoyl-CoA value) of the saturated fatty acyl-CoAs tested. Substrate inhibition was mostly observed with acyl-CoA esters giving Vmax. values higher than 50% of that given by palmitoyl-CoA.  相似文献   

2.
Long-chain acylcarnitines accumulate in long-chain fatty acid oxidation defects, especially during periods of increased energy demand from fat. To test whether this increase in long-chain acylcarnitines in very long-chain acyl-CoA dehydrogenase (VLCAD(-/-)) knock-out mice correlates with acyl-CoA content, we subjected wild-type (WT) and VLCAD(-/-) mice to forced treadmill running and analyzed muscle long-chain acyl-CoA and acylcarnitine with tandem mass spectrometry (MS/MS) in the same tissues. After exercise, long-chain acyl-CoA displayed a significant increase in muscle from VLCAD(-/-) mice [C16:0-CoA, C18:2-CoA and C18:1-CoA in sedentary VLCAD(-/-): 5.95 +/- 0.33, 4.48 +/- 0.51, and 7.70 +/- 0.30 nmol x g(-1) wet weight, respectively; in exercised VLCAD(-/-): 8.71 +/- 0.42, 9.03 +/- 0.93, and 14.82 +/- 1.20 nmol x g(-1) wet weight, respectively (P < 0.05)]. Increase in acyl-CoA in VLCAD-deficient muscle was paralleled by a significant increase in the corresponding chain length acylcarnitine. Exercise resulted in significant lowering of the free carnitine pool in VLCAD(-/-) muscle. This is the first study demonstrating that acylcarnitines and acyl-CoA directly correlate and concomitantly increase after exercise in VLCAD-deficient muscle.  相似文献   

3.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

4.
A method for the determination of short-chain acyl-CoA esters in tissue extracts by HPLC has been developed. The acyl-CoA esters were extracted from freeze-clamped rat livers with perchloric acid. The extract was applied to a Sep-Pak C18 cartridge. The cartridge was washed with acidic water, pH 3, followed by petroleum ether, chloroform, and methanol. Then the acyl-CoA esters were eluted from the cartridge with ethanol/water (65:35) containing 0.1 M ammonium acetate. By this procedure, the acyl-CoA esters were concentrated and partially purified. The eluate was analyzed by HPLC using reverse-phase columns of Develosil ODS (0.46 X 15 cm plus 0.46 X 25 cm). The separation of the acyl-CoA esters was conducted with a linear gradient (1.75 to 10%) of acetonitrile. The CoA compounds (malonyl-CoA, succinyl-CoA plus CoASH, methylmalonyl-CoA, 3-hydroxy-3-methylglutaryl-CoA, acetyl-CoA, acetoacetyl-CoA, and propionyl-CoA) were identified and determined by monitoring at 260 nm. Isobutyryl-CoA was used as an internal standard, since the content of this CoA ester was negligible in livers from rats with several metabolic conditions. The lower limit of detection of individual acyl-CoA esters was approximately 50 pmol. Using this analytical method, short-chain acyl-CoA esters were determined in livers from normal and fasted rats.  相似文献   

5.
To assess whether glycolysis, Na+-H+ exchange and oxidation of fatty acid derived from endogenous lipolysis are involved in the beneficial effects of 24-h fasting on the ischaemic - reperfused heart, it was studied the effects of inhibiting Na+ - H+ exchange using 10 muM dimethylamiloride and fatty acid oxidation using 2 mM oxfenicine, on the functional activity, lactate production and cell viability measured with tetrazolium stain. Since fasting accelerates heart fatty acid oxidation, data were compared to those from fed rats; using Langendorff perfused (glucose 10 mM) hearts of 250-350 g Wistar rats exposed to 25 min ischaemia - 30 min reperfusion. Fasting reduced the ischaemic rise of end diastolic pressure (contracture), improved recovery of contraction and lowered lactate production in comparison with the fed whereas cellular viability was similar in both groups. Dimethylamiloride improved the recovery of contraction (fed control 24 +/- 9%, fed treated 68 +/- 11%, P < 0.05 at the end of reperfusion), attenuated the contracture (fed control 40 +/- 9%, fed treated 24 +/- 11%, P < 0.05 at the beginning of reperfusion) and reduced lactate production in the fed group and increased cellular viability in both groups (fed control 21 +/- 6%, fed treated 69 +/- 7%, P < 0.05, and fasted control 18 +/- 7%, fasted treated 53 +/- 8%, P < 0.05). Oxfenicine reduced the recovery of contraction (fasted control 88 +/- 6%, fasted treated 60 +/- 11%, P < 0.05) and increased lactate production of fasted group and attenuated the contracture in the fed. These data suggest that beneficial effects of fasting owe, at least in part, to a lowered glycolysis probably secondary to the increased fatty acid oxidation and to the accumulation of energy supplying acyl esters. Dimethylamiloride slowing of glycolysis might explain functional improvement, whereas it seems unrelated to the protection on cell viability.  相似文献   

6.
Acyl-CoAs have important role in fat and glucose metabolism of the cells. In this study we have developed an on-line HPLC-ESI-MS/MS method for determination of long-chain acyl-CoA compounds in rat liver samples. Six long-chain acyl-CoAs (C16:0, C16:1, C18:0, C18:1, C20:0 and C20:4) were separated with a C4 reversed-phase column using triethylamine acetate and acetonitrile gradient. Negative electrospray ionization is very suitable for acyl-CoA compounds and excellent MS/MS spectra for long-chain acyl-CoAs can be obtained. MS/MS method with an ion trap mass spectrometer makes it possible to identify and quantitate individual acyl-CoAs simultaneously. The method proved to be sensitive enough for determination of all compounds of interest using 0.4-0.7 g of tissue and was validated in the range of 0.1-15.0 pmol/microl.  相似文献   

7.
Rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3-depleted rats) display several features of the metabolic syndrome including hypertension and cardiac hypertrophy. This coincides with alteration of the cardiac muscle phospholipid and triacylglycerol fatty acid content and/or pattern. In the present study, the latter variables were measured in the cardiac endothelium of normal and omega3-depleted rats. Samples derived from four rats each were obtained from 16 female normal fed rats and three groups of 36-40 female fed omega3-depleted rats each aged 8-9, 15-16 and 22-23 weeks. At comparable mean age, the ratio between the square root of the total fatty acid content of phospholipids and cubic root of the total fatty acid content of triacylglycerols was lower in omega3-depleted rats than in control animals. The total fatty acid content of triacylglycerols was inversely related to their relative content in C20:4omega6. Other differences between omega3-depleted rats and control animals consisted in a lower content of long-chain polyunsaturated omega3 fatty acids in both phospholipids and triacylglycerols, higher content of long-chain polyunsaturated omega6 fatty acids in phospholipids, higher activity of delta9-desaturase (C16:0/C16:1omega7 and C18:0/C18:1omega9 ratios) and elongase [(C16:0 + C16:1omega7)/(C18:0 + C18:1omega9) and C20:4omega6/C22:4omega6 ratios], but impaired generation of C22:6omega3 from C22:5omega3 in the former rats. These findings support the view that cardiovascular perturbations previously documented in the omega3-depleted rats may involve impaired heart endothelial function.  相似文献   

8.
The beta-oxidation and esterification of medium-chain fatty acids were studied in hepatocytes from fasted, fed and fructose-refed rats. The beta-oxidation of lauric acid (12:0) was less inhibited by fructose refeeding and by (+)-decanoyl-carnitine than the oxidation of oleic acid was, suggesting a peroxisomal beta-oxidation of lauric acid. Little lauric acid was esterified in triacylglycerol fraction, except at high substrate concentrations or in the fructose-refed state. With [1-14C]myristic acid (14:0), [1-14C]lauric acid (12:0), [1-14C]octanoic acid (8:0) and [2-14C]adrenic acid (22:4(n - 6] as substrate for hepatocytes from carbohydrate-refed rats, a large fraction of the 14C-labelled esterified fatty acids consisted of newly synthesized palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) while intact [1-14C]oleic acid substrate was esterified directly. With [9,10-3H]myristic acid as the substrate, small amounts of shortened 3H-labelled beta-oxidation intermediates were found. With [U-14C]palmitic acid, no shortened fatty acids were detected. It was concluded that when the mitochondrial fatty acid oxidation is down-regulated such as in the carbohydrate-refed state, medium-chain fatty acids can partly be retailored to long-chain fatty acids by peroxisomal beta-oxidation followed by synthesis of C16 and C16 fatty acids which can then stored as triacylglycerol.  相似文献   

9.
1. Adipocytes from fed and fasted (24 hr) groups of rats were fractionated into mitochondria, microsomes and plasma membranes. 2. Fasting significantly decreased the mitochondrial activity of palmitoyl-CoA synthetase, palmitoyl-CoA hydrolase, beta-oxidation and pyruvate dehydrogenase. 3. Fasting elevated intramitochondrial long-chain acyl-CoA. 4. Pyruvate dehydrogenase was inhibited 50% by addition of 30 microM palmitoyl-CoA. 5. Fasting-induced changes in palmitoyl-CoA metabolism may modulate pyruvate dehydrogenase activity in adipocyte mitochondria.  相似文献   

10.
Medium-chain acyl-coenzyme A (CoA) esters are key metabolites in lipid metabolism. Liquid chromatography-electrospray ionization mass spectrometry analysis of medium-chain acyl-CoA esters is described. Eight medium-chain acyl-CoA esters were well separated on a C(8)-MS reversed-phase column using a linear gradient of ammonium acetate buffer (pH 5.3)-acetonitrile. The positive-ion mass spectra of all the saturated and unsaturated medium-chain acyl-CoA esters gave dominant [M+H](+) ions, whereas their negative-ion mass spectra showed abundant [M-H](-) and [M-2H](2-) ions. The positive-ion mode of operation was slightly less sensitive than the negative-ion detection mode. Five medium-chain acyl-CoA esters of C(6:0), C(8:0), C(8:1), C(10:0), and C(10:1) in liver, heart, kidney, and brain from the mouse were identified. The predominant acyl-CoA peaks were C(6:0), C(8:0), and C(10:0). Small amounts of medium-chain acyl-CoAs of C(8:1) and C(10:1) were detected only in heart and kidney. The analytical method is very useful for the analysis of medium-chain acyl-CoA esters in the tissues.  相似文献   

11.
A detailed analysis of the subcellular distribution of acyl-CoA esters in rat liver revealed that significant amounts of long-chain acyl-CoA esters are present in highly purified nuclei. No contamination of microsomal or mitochondrial marker enzymes was detectable in the nuclear fraction. C16:1 and C18:3-CoA esters were the most abundant species, and thus, the composition of acyl-CoA esters in the nuclear fraction deviates notably from the overall composition of acyl-CoA esters in the cell. After intravenous administration of the non-beta-oxidizable [(14)C]tetradecylthioacetic acid (TTA), the TTA-CoA ester could be recovered from the nuclear fraction. Acyl-CoA esters bind with high affinity to the ubiquitously expressed acyl-CoA binding protein (ACBP), and several lines of evidence suggest that ACBP functions as a pool former and transporter of acyl-CoA esters in the cytoplasm. By using immunohistochemistry, immunofluorescence microscopy, and immunoelectron microscopy we demonstrate that ACBP localizes to the nucleus as well as the cytoplasm of rat liver cell and rat hepatoma cells, suggesting that ACBP may also be involved in regulation of acyl-CoA-dependent processes in the nucleus.  相似文献   

12.
BACKGROUND: Ghrelin derives from endocrine cells (A-like cells) in the stomach (mainly the oxyntic mucosa). Its concentration in the circulation increases during fasting and decreases upon re-feeding. This has fostered the notion that the absence of food in the upper gastrointestinal (GI) tract stimulates the secretion of ghrelin. The purpose of the present study was to determine the concentration of ghrelin in serum and oxyntic mucosa after replacing food with intravenous (iv) infusion of nutrients for 8 days using the technique known as total parenteral nutrition (TPN) MATERIALS AND METHODS: Male Sprague-Dawley rats (200-250 g) were given nutrients (lipids, glucose, amino acids, minerals and vitamins) by iv infusion for 8 days during which time they were deprived of food and water; another group was deprived of food for 24-48 h (fasted controls), while fed controls had free access to food and water. Serum ghrelin, gastrin and pancreastatin concentrations were measured together with the ghrelin content of the oxyntic mucosa. Plasma insulin and glucose as well as serum lipid concentrations were also determined. RESULTS: Fasted rats had higher serum ghrelin than TPN rats and fed controls. The oxyntic mucosal ghrelin concentration (and content) was lower in TPN rats than in fasted rats or fed controls. The serum gastrin and pancreastatin concentrations were lower in TPN rats and fasted rats than in fed controls. The plasma insulin concentration was 87 pmol/l+/-8 (SEM) in TPN rats compared to 101+/-16 pmol/l in fed controls; it was 26+/-14 pmol/l in fasted rats. The basal plasma glucose level was 11+/-0.6 mmol/l in TPN rats and 12+/-0.8 mmol/l in fed controls; it was 7+/-0.3 mmol/l in fasted rats. In TPN rats, the serum concentrations of free fatty acids, triglycerides and cholesterol were increased by 100%, 50% and 25%, respectively, compared to fed controls. Fasted rats had higher circulating concentrations of free fatty acids (20%) and lower concentrations of triglycerides (-40%) than fed controls; fasted rats did not differ from fed controls with respect to serum cholesterol. CONCLUSION: The circulating ghrelin concentration is high in situations of nutritional deficiency (starvation) and low in situations of nutritional plenty (free access to food or TPN). The actual presence or absence of food in the GI tract seems irrelevant. Circulating insulin and glucose concentrations did not differ much between TPN rats and fed controls; serum lipids, however, were elevated in the TPN rats. We suggest that elevated blood lipid levels contribute to the suppression of circulating ghrelin in rats subjected to TPN for 8 days.  相似文献   

13.
Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein–lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isothermal titration calorimetry) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana. The dissociation constants, stoichiometry and enthalpy change of AtACBP interactions with various acyl-CoA esters were determined using ITC. Strong binding of recombinant (r) AtACBP6 with long-chain acyl-CoA (C16- to C18-CoA) esters was observed with dissociation constants in the nanomolar range. However, the affinity of rAtACBP4 and rAtACBP5 to these acyl-CoA esters was much weaker (dissociation constants in the micromolar range), suggesting that they interact with acyl-CoA esters differently from rAtACBP6. When transgenic Arabidopsis expressing AtACBP6pro::GUS was generated, strong GUS (β-glucuronidase) expression in cotyledonary-staged embryos and seedlings prompted us to measure the acyl-CoA contents of the acbp6 mutant. This mutant accumulated higher levels of C18:1-CoA and C18:1- and C18:2-CoAs in cotyledonary-staged embryos and seedlings, respectively, in comparison with the wild type. The acbp4acbp5acbp6 mutant showed the lightest seed weight and highest sensitivity to abscisic acid during germination, suggesting their physiological functions in seeds.  相似文献   

14.
Fiber type specificity for expression of all three rat skeletal muscle pyruvate dehydrogenase kinase (PDK) isoforms (PDK1, 2, and 4) was determined in fed and 24-h fasted rats. PDK activity and isoform protein and mRNA contents were determined in white gastrocnemius (WG; fast-twitch glycolytic), red gastrocnemius (RG; fast-twitch oxidative), and soleus (Sol; slow-twitch oxidative) muscles. PDK activity was lower in WG compared with oxidative muscles (RG, Sol) in both fed and fasted rats. PDK activities from fed muscles were 0.12 +/- 0.04, 0.30 +/- 0.01, and 0.36 +/- 0.08 min(-1) in WG, Sol, and RG, respectively, and increased in fasted muscles (0.36 +/- 0.09, 0.68 +/- 0.18, and 0.80 +/- 0.14 min(-1)). This correlated with increased PDK4 protein and to a lesser extent with PDK4 mRNA. PDK2 protein was not different between fiber types in fed or fasted rats, but PDK2 mRNA content was twofold greater in RG from fasted rats compared with fed rats. PDK1 was unaltered by fasting in all muscle types at both the protein and mRNA level, but in both fed and fasted rats had much greater protein and mRNA content in the oxidative vs. glycolytic muscles. In conclusion, PDK activity and PDK1 and 4 protein and mRNA were lower in glycolytic vs. oxidative muscles from fed and fasted rats. Fasting for 24 h induced a two- to threefold increase in PDK activity that was mainly due to increases in PDK4 protein and mRNA. PDK1 and 2 protein and mRNA were generally unaltered by fasting in all fiber types, except for increased PDK2 mRNA in the fast oxidative fibers. Because the PDK isoforms vary greatly in their kinetic properties, their relative proportions in the three fiber types at any given time during fasting could significantly alter the acute regulation of the pyruvate dehydrogenase complex.  相似文献   

15.
Freeze-thawed rat liver mitochondria were extensively washed with potassium phosphate, pH 7.5, and the residue was extracted with 10 mM potassium phosphate, pH 7.5, 1% (w/v) sodium cholate, 0.5 M KCl. The four beta-oxidation enzyme activities of the washes and the last extract were assayed with substrates of various carbon chain lengths. Our data suggest that the last extract contains a novel acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase. A novel acyl-CoA dehydrogenase was purified. The molecular masses of the native enzyme and the subunit were estimated to be 150 and 71 kDa, respectively. One mole of enzyme contained 2 mole of FAD. These properties and immunochemical properties of the enzyme differed from those of three other acyl-CoA dehydrogenases: short-, medium-, and long-chain acyl-CoA dehydrogenases. Carbon chain length specificity of the enzyme differed from that of other acyl-CoA dehydrogenases. The enzyme was active toward CoA esters of long- and very-long-chain fatty acids, but not toward those of medium- and short-chain fatty acids. The specific enzyme activity was greater than 10 times that of long-chain acyl-CoA dehydrogenase when palmitoyl-CoA was used as substrate. We propose the name "very-long-chain acyl-CoA dehydrogenase" for this enzyme.  相似文献   

16.
A well-characterized crude peroxisomal fraction from brown adipose tissue was used to compare peroxisomal beta-oxidation with beta-oxidation in isolated mitochondria. The apparent Km and chain-length specificity for peroxisomal (acyl-CoA) and mitochondrial (acyl-carnitine) beta-oxidation were determined with saturated C4-C22 fatty acyls and some unsaturated fatty acyls. Peroxisomes showed the lowest Km for medium-chain (9:0-10:0) and mono-unsaturated long-chain (16:1-22:1) fatty acids, and highest oxidation rates with lauroyl-CoA (12:0). Mitochondria showed the lowest Km for long-chain fatty acids (16:0-18:0) and highest oxidation rates with 12:0-16:0 and with 18:2. These in vitro results offer an explanation of previous results obtained in situ by Foerster et al. (Foerster, E.-C., F?hrenkemper, T., Rabo, U., Graf, P. and Sies, H. (1981) Biochem. J. 196, 705-712) and indicate a role for peroxisomes in degradation of medium-chain and mono-unsaturated long-chain fatty acids. It is concluded that no mechanism, other than relative preferences, needs to be suggested for channelling of fatty acids between the two subcellular organelles.  相似文献   

17.
Characteristics of acyl-coenzyme A (acyl-CoA):steroid acyltransferase from the digestive gland of the oyster Crassostrea virginica were determined by using estradiol (E2) and dehydroepiandrosterone (DHEA) as substrates. The apparent Km and Vmax values for esterification of E2 with the six fatty acid acyl-CoAs tested (C20:4, C18:2, C18:1, C16:1, C18:0, and C16:0) were in the range of 9-17 microM E2 and 35-74 pmol/min/mg protein, respectively. Kinetic parameters for esterification of DHEA (Km: 45-120 microM; Vmax: 30-182 pmol/min/mg protein) showed a lower affinity of the enzyme for this steroid. Formation of endogenous fatty acid esters of steroids by microsomes of digestive gland and gonads incubated in the presence of ATP and CoA was assessed, and at least seven E2 fatty acid esters and five DHEA fatty acid esters were observed. Some peaks eluted at the same retention times as palmitoleoyl-, linoleoyl-, oleoyl/palmitoyl-, and stearoyl-E2; and palmitoleoyl-, oleoyl/palmitoyl-, and stearoyl-DHEA. The same endogenous esters, although in different proportions, were produced by gonadal microsomes. The kinetic parameters for both E2 (Km: 10 microM; Vmax: 38 pmol/min/mg protein) and DHEA (Km: 61 microM; Vmax: 60 pmol/min/mg protein) were similar to those obtained in the digestive gland. Kinetic parameters obtained are similar to those observed in mammals; thus, fatty acid esterification of sex steroids appears to be a well-conserved conjugation pathway during evolution.  相似文献   

18.
In control rats, long-chain monocarboxylyl-CoA, omega-hydroxymonocarboxylyl-CoA, and dicarboxylyl-CoA esters were substrates for hepatic, renal, and myocardial peroxisomal beta-oxidation. The latter enzyme system could not be detected in skeletal muscle. Clofibrate treatment resulted in an enhancement of peroxisomal beta-oxidizing capacity in various tissues. Intact mitochondria from control rat liver and kidney cortex incubated in the presence of L-carnitine were capable of oxidizing long-chain monocarboxylyl-CoAs and omega-hydroxymonocarboxylyl-CoAs but not dicarboxylyl-CoAs. However, control rat liver mitochondria permeabilized by digitonin oxidized dodecanedioyl-CoA indicating that the liver mitochondrial beta-oxidation system can act on dicarboxylyl-CoA esters even if the overall intact mitochondrial system is inactive on these substrates. Intact liver mitochondria from clofibrate-treated animals rapidly oxidized lauroyl-CoA and 12-hydroxylauroyl-CoA but not dodecanedioyl-CoA. These mitochondria were active on hexadecanedioyl-CoA and this activity amounted to 20-25% of that measured with palmitoyl-CoA and 16-hydroxypalmitoyl-CoA as substrates. No mitochondrial dicarboxylyl-CoA oxidation could be detected in kidney cortex from animals receiving clofibrate in their diet. Heart and skeletal muscle intact mitochondria from untreated and clofibrate-treated rats were capable of oxidizing each type of acyl-CoA as a substrate. Dicarboxylyl-CoA synthetase and carnitine dicarboxylyltransferase activities were detected in various tissues from untreated and clofibrate-treated rats with the exception of carnitine dodecanedioyltransferase reaction in livers from untreated and clofibrate-treated rats. In skeletal muscle, the acyl-CoA synthetase activities could be detected only in the presence of detergents.  相似文献   

19.
Bovine and rat liver acyl-CoA-binding proteins (ACBP) were found to exhibit a much higher affinity for long-chain acyl-CoA esters than both bovine hepatic and cardiac fatty-acid-binding proteins (hFABP and cFABP respectively). In the Lipidex 1000- as well as the liposome-binding assay, bovine and rat hepatic ACBP effectively bound long-chain acyl-CoA ester, h- and c-FABP were, under identical conditions, unable to bind significant amounts of long-chain acyl-CoA esters. When FABP, ACBP and [1-14C]hexadecanoyl-CoA were mixed, hexadecanoyl-CoA could be shown to be bound to ACBP only. The experimental results give strong evidence that ACBP, and not FABP, is the predominant carrier of acyl-CoA in liver.  相似文献   

20.
The mitochondrial content of long-chain acyl-CoA esters in the brown adipose tissue of guinea pigs increased 3.5-fold from a level of 92 +/- 17 pmol per mg protein (+/- S.E.; n = 7) in the control animals adapted at 22 degrees C to a new steady-state level of 328 +/- 20 pmol per mg protein (+/- S.E.; n = 46) after 10 days of cold-acclimation (5 degrees C). These low values of long-chain acyl-CoA species and the slow adaptive response for their increase do not support the proposal (Cannon, B., Sindin, U. and Romert, L. (1977) FEBS Lett. 4, 43-46) that the fatty acid CoA-esters have a physiological function in the regulation of the H+ (or OH-) permeability of the mitochondrial inner membrane. Experimental evidence is presented supporting the proposal that the long-chain acyl-CoA species are largely confined to the cytosolic side of the inner membrane. The activity of the adenine nucleotide translocase, as estimated at 25 degrees C in the reverse direction, was found to increase 5-fold upon depletion of the mitochondria of fatty acids (free and esterified) by preincubation with bovine serum albumin. The presence of potent inhibitors, i.e., long-chain acyl-CoA species, of adenine nucleotide translocation in brown adipose tissue of thermogenically active animals further supports the conclusion that ATP hydrolyzing mechanisms contribute insignificantly to long-term thermogenesis. The low values of long-chain acyl-CoA hydrolase (EC 3.1.2.1) activity, as measured in intact mitochondria and on a mitochondrial matrix fraction (i.e., 1.6 nmol X min-1 per mg protein), do not support the proposal that the hydrolase activity plays a significant role in the loose-coupling of brown adipose tissue mitochondria, either by a futile cycle mechanism or promoted by free fatty acid-induced uncoupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号