首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-one Brassica juncea accessions were screened at the cotyledon stage for resistance to four isolates of Peronospora parasitica. Isolates R1 and P003 were derived from crops of oilseed rape (B. napus ssp. oleifera) in the UK and isolates IP01 and IP02 were derived from crops of mustard (B. juncea) in India. B. napus cv. Ariana, which was used as a susceptible control for isolates from B. napus, was resistant to isolates from B. juncea. All, B. juncea accessions were resistant to isolates from B. napus except one accession which expressed moderate resistance to isolate P003. Five groups of B. juncea accessions with differential resistance were identified. Lines homogeneous for resistance were selected from seedling populations of accessions that exhibited a heterogeneous reaction to isolates from B. juncea. The differential resistance identified in the B. juncea-P. parasitica combination can be used as a foundation for future studies of the genetics of the host-pathogen interaction and for breeding for disease resistance.  相似文献   

2.
Downy mildew (Peronospora parasitica (Pers. ex Fr.) Fr.) is a serious disease of brassicas in several countries. Seedlings are very susceptible to this pathogen and crops require frequent fungicide treatments to reach a good marketable yield. The use of resistant cultivars can be the most economical, reliable and environmental friendly method for managing this disease. In this work 32 Sicilian landraces and 16 commercial cultivars of cauliflower and broccoli (B. oleracea) were screened for downy mildew resistance at the cotyledon stage using one P. parasitica strain from Portugal and one from Sicily (Italy). Seven-day old seedlings were inoculated by deposing a droplet of a spore suspension on the cotyledons, incubated under controlled environment and scored 7 days later using a seven-class scale of interaction phenotype (IP), which took into consideration host response and pathogen sporulation. There were no differences in virulence between the two P. parasitica isolates. Accessions ranged from very susceptible to highly resistant to downy mildew showing a variable number of resistant individuals per accession. Forty accessions were very susceptible to downy mildew and are of no interest as sources of resistance, since most of the seedlings were scored in the most susceptible IP classes. Seven accessions had intermediate resistance and included individuals that expressed some degree of resistance. Accession Cv 90 (Cavolfiore Torino) and Br 63 (Sparaceddu) showed the majority of seedlings in the resistant IP classes and may constitute valuable sources of resistance to downy mildew to be used in breeding programs.  相似文献   

3.
Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi‐winter oilseed rape cultivar ‘ZS11’ and its comprehensive genomic comparison with the genomes of the winter‐type cultivar ‘Darmor‐bzh’ as well as two progenitors. The integrated BAC‐to‐BAC and whole‐genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high‐quality genome assembly of B. napus ‘ZS11’. Within a short evolutionary period (~6700 years ago), semi‐winter‐type ‘ZS11’ and the winter‐type ‘Darmor‐bzh’ maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to ‘Darmor‐bzh’, both two subgenomes of ‘ZS11’ are closely related to its progenitors, and the ‘ZS11’ genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi‐winter‐type ‘ZS11’ underwent potential genomic introgressions with B. rapa (Ar). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization‐responsive flowering time in ‘ZS11’ was first experienced HE, and then underwent genomic introgression event with Ar, which potentially has led to genetic differences in controlling vernalization in the semi‐winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi‐winter oilseed rape in Asia.  相似文献   

4.
The competitiveness of two transgenic oilseed rape (Brassica napus ssp.napus) lines and their fertile transgenic hybrid was tested in field trials in Belgium and Denmark. The lines contained genes for male sterility, restoration of fertility and herbicide resistance. The competitiveness of the three transgenic lines was related to three non-transformed commercially-grown oilseed rape varieties: Drakkar, Topas and Line. As a reference of a more aggressive crucifer, white mustard (Sinapis alba) was also included in the experiment. The experimental design was a complete block design with two locations, monocultures and mixtures with barley (Hordeum vulgare), three plant densities, four harvest times and four blocks. The yield density relationship of the transgenic oilseed rape lines was not different from that of the non-transgenic varieties in either location. The first harvest times showed a vigorous biomass production of white mustard, which in turn produced a significant difference in the competitive ability between oilseed rape and white mustard. Later, this difference decreased, and in Belgium there was no difference at the last harvest time. Variations within populations may blur actual differences between lines and varieties, and it is argued that unless the experimental design covers a range of competitiveness for which it is possible to detect significant differences, test results reporting a lack of difference between transgenic and non-transgenic plants are of little value.  相似文献   

5.
Based on sirodesmin production and pathogenicity tests with Brassica cotyledons, strains of Leptosphaeria maculans were classified as aggressive (pathotype group A), or non-aggressive (pathotype group NA). NA strains caused no differential reactions. However, the pathotype group A could be divided into 5 sub-groups. AO isolates caused non-sporulating lesions with dark margins while Al isolates sporulated on cotyledons of most Brassica hosts tested. Only the cv. Erfurter Zwerg (B. oleracea var. botrytis) reacted resistant against AO and Al strains. A2 isolates caused resistance reactions on cotyledons of the cvs. Quinta (B. napus var. oleifera) and Runde (B. rapa var. rapa). A3 and A4 isolates were not detectable in our material. Isolates of these pathotype groups, supplied by Dr. P. H. Williams, Madison, USA, caused differential reactions on the oilseed rape cvs. Glacier, Quinta and Jet Neuf. In glasshouse and field experiments strains of pathotype groups Al, A2 and NA were tested on true leaves and hypocotyls of different oilseed rape cultivars. The low aggressiveness of NA isolates was evident under all experimental conditions. A2 strains caused resistance reactions not only on cotyledons but also on true leaves and hypocotyls of Quinta. Moreover, compared with Al, pathotype group A2 was more aggressive on hypocotyls of Jet Neuf. The resistance of this cultivar against Al isolates was clearly visible on hypocotyls and true leaves but not on cotyledons.  相似文献   

6.
Associated infections between Peronospora parasitica and Albugo candida were observed on Brassica juncea leaves. A. Candida appeared first and was followed by P. parasitica. A. candida predisposes the host tissues towards susceptibility to P. parasitica.  相似文献   

7.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

8.
Oilseed rape stem rot disease caused by Sclerotinia sclerotiorum causes serious yield losses worldwide. Glucosinolates as specific secondary metabolites of Brassicaceae are produced in various parts of the host plants. Their enzymatic hydrolysis releases chemical components, particularly isothiocyanates, with fungitoxic activity and volatile characteristics. To investigate the effect of volatiles derived from Brassica tissues, the pathogen was exposed to hydrolysis products of Brassica shoot parts as sources of glucosinolates including oilseed rape varieties and two species, black and white mustard. The results showed significant differences in inhibition of S. sclerotiorum growth between varieties and species. All tissues of black mustard inhibited completely the exposed colonies of the pathogen and oilseed rape varieties Dunkeld, Oscar and Rainbow had significant inhibitory effect on the fungus. The genotypes demonstrated significant differences for the production of toxic volatiles, indicating that GSL contents in Brassica species and even cultivars have different potentials for toxic products.  相似文献   

9.
Replicated small plot field experiments were done at two sites growing winter oilseed rape (ADAS Boxworth, Cambridgeshire and ADAS High Mowthorpe, North Yorkshire) and two sites growing spring oilseed rape (ADAS Bridgets, Hampshire and ADAS Rosemaund, Herefordshire) to investigate the effect of cabbage aphid (Brevicoryne brassicae) on crop yield and quality. All four sites were included in the first 2 yr of the experiment in 1994 and 1995 but only those with winter oilseed rape were continued into the final year in 1996. Plots were artificially inoculated with cabbage aphids at either five aphid 4 m-2 or 5 aphids 16 m-2 or left uninoculated to become naturally infested. In 1995 and 1996 the naturally infested treatment was omitted. Sprays of the aphicide pirimicarb at GS 3.3, 3.7, 4.5, 4.9 and 5.5 were used to manipulate aphid populations. Once a plot had been treated at a target growth stage it was sprayed on all subsequent occasions to prevent recolonisation. Aphid numbers were assessed prior to each spray date and their effect on the crop measured in terms of yield of seed and oil and glucosinolate content. Artificial inoculation of aphids was often successful in establishing different populations of the pest at a range of growth stages. Results showed that cabbage aphid sometimes reduced both crop yield and quality. Yield responses to insecticide treatment tended to be larger in spring oilseed rape than in winter oilseed rape mainly because it became more heavily infested at an early growth stage. Tentative thresholds are proposed for control of the pest in both winter and spring oilseed rape. It is stressed that cabbage aphid is a sporadic pest and rarely likely to reach these threshold levels in field crops.  相似文献   

10.
Turnip yellows virus (TuYV; previously known as beet western yellows virus) causes major diseases of Brassica species worldwide resulting in severe yield-losses in arable and vegetable crops. It has also been shown to reduce the quality of vegetables, particularly cabbage where it causes tip burn. Incidences of 100% have been recorded in commercial crops of winter oilseed rape (Brassica napus) and vegetable crops (particularly Brassica oleracea) in Europe. This review summarises the known sources of resistance to TuYV in B. napus (AACC genome), Brassica rapa (AA genome) and B. oleracea (CC genome). It also proposes names for the quantitative trait loci (QTLs) responsible for the resistances, Tu rnip Y ellows virus R esistance (TuYR), that have been mapped to at least the chromosome level in the different Brassica species. There is currently only one known source of resistance deployed commercially (TuYR1). This resistance is said to have originated in B. rapa and was introgressed into the A genome of oilseed rape via hybridisation with B. oleracea to produce allotetraploid (AACC) plants that were then backcrossed into oilseed rape. It has been utilised in the majority of known TuYV-resistant oilseed rape varieties. This has placed significant selection pressure for resistance-breaking mutations arising in TuYV. Further QTLs for resistance to TuYV (TuYR2-TuYR9) have been mapped in the genomes of B. napus, B. rapa and B. oleracea and are described here. QTLs from the latter two species have been introgressed into allotetraploid plants, providing for the first time, combined resistance from both the A and the C genomes for deployment in oilseed rape. Introgression of these new resistances into commercial oilseed rape and vegetable brassicas can be accelerated using the molecular markers that have been developed. The deployment of these resistances should lessen selection pressure for resistance-breaking isolates of TuYV and thereby prolong the effectiveness of each other and extant resistance.  相似文献   

11.
To determine whether bacteria isolated from within plant tissue can have plant growth-promotion potential and provide biological control against soilborne diseases, seeds and young plants of oilseed rape (Brassica napus L. cv. Casino) and tomato (Lycopersicon lycopersicum L. cv. Dansk export) were inoculated with individual bacterial isolates or mixtures of bacteria that originated from symptomless oilseed rape, wild and cultivated. They were isolated after surface sterilization of living roots and stems. The effects of these isolates on plant growth and soilborne diseases for oilseed rape and tomato were evaluated in greenhouse experiments. We found isolates that not only significantly improved seed germination, seedling length, and plant growth of oilseed rape and tomato but also, when used for seed treatment, significantly reduced disease symptoms caused by their vascular wilt pathogens Verticillium dahliae Kleb and Fusarium oxysporum f. sp. lycopersici (Sacc.), respectively.  相似文献   

12.
The effect of crop rotation and monocropping on the occurrence of bacteria with antagonistic activity toward Pythium debaryanum and Fusarium oxysporum was shown. Arthrobacter spp., fluorescent Pseudomonas spp. and actinomycetes were isolated from winter rape, sugar beet and winter barley rhizosphere and bulk soil from the plots of a long-term crop rotation experiment (18 years). The occurrence of mycoantagonistic isolates and their antibiosis level exhibited specificity for the site, crop and crop rotation. Mycoantagonistic activity was common among actinomycetes and fluorescent Pseudomonas spp. and less frequent among Arthrobacter spp. Antibiosis of fluorescent Pseudomonas spp. and Arthrobacter spp. was in general stronger against P. debaryanum than F. oxysporum. The highest percentage of antagonistic Pseudomonas spp. against P. debaryanum was in the plots of barley crop, while plots of winter rape showed higher frequency of antagonists against F. oxysporum. The highest antibiosis activity of Arthrobacter spp. against both pathogens occurred in isolates from barley and winter rape monoculture, and there were no F. oxysporum antagonists among these bacteria in sugar beet monoculture. Most of actinomycete isolates strongly inhibited growth of P. debaryanum and F. oxysporum. The percentage of mycoantagonistic actinomycetes and their antibiosis level were the highest in the 6-year crop rotation system.  相似文献   

13.
Oilseed rape (Brassica napus L.) is one of the most important oilseed crops in temperate climates. Erysiphe cruciferarum is an important disease of oilseed rape and causes crop loss in warmer areas of Europe. The research investigated the effect of nitrogen fertilizer and fungicidal treatment against powdery mildew infection caused by E. cruciferarum of oilseed rape on seed components, including protein, oil, oleic acid, linolenic acid and undesirable substances such as sinapic acid esters (SAE) and glucosinolates (GSL), using near infrared spectroscopy (NIRS). Five susceptible oilseed rape varieties were employed in this research using four treatment groups: no nitrogen fertilization and no fungicidal treatment (N0–F0); no nitrogen fertilization but fungicidal treatment (N0–F1); and nitrogen fertilization but no fungicidal treatment (N1–F0); nitrogen fertilization and fungicidal treatment (N1–F1). Nitrogen fertilization increased the protein, but lowered the oil content, of the seeds. Fungicidal treatments significantly increased oil contents in all varieties tested, however reduced protein levels in fertilized and non-fertilized plots. The level of linolenic acid did not change significantly in any plots of any treatment combinations; a similar result was observed in the level of oleic acid in most of the genotypes. Nitrogen fertilization increased GSL and SAE levels, whereas fungicidal treatment had no effect. Our findings demonstrated that nitrogen fertilization can markedly influence some quality parameters in oilseed rape; however, the application of fungicides reduced side effects of nitrogen fertilizer and resulted a reduction on GSL, SAE and protein contents but an increase on total oil and oleic acid contents.  相似文献   

14.
This is the first record of seed transmission of turnip yellow mosaic virus (TYMV) in oilseed and turnip rapes. The seed transmission of TYMV in a naturally infected winter turnip rape (Brassica napus var. silvestris) cultivar Perko PVH was investigated. By ELISA 1.6%, 3.2% and 8.3% seed transmission of the virus was found in seed of plants from three localities. The proportion of infected seeds produced by artificially infected plants of winter oilseed rape (Brassica napus ssp. oleifera) and winter turnip rape cultivars was determined. The virus transmission rate, expressed as the proportion of virus-infected plants which germinated from the seed was for the oilseed rape cvs Jet Neuf 0.1%, Solida 0.4%, Silesia 0.8%, Darmor 1.2%, SL-507 0.2%, SL-509 0.0% and for the winter turnip rape cv. Perko 1.5%. ELISA cannot be used in direct tests on bulk seed lots to estimate proportion of infected seed, but must be used on germinated seedlings.  相似文献   

15.
The fungus Peronospora parasitica (Pers. ex Fr.) Fr. is an obligate biotroph infecting a wide range of host species in the family Cruciferae. Isolates from different hosts are morphologically similar, and pathotypes are usually distinguished on the basis of host range. Random Amplified Polymorphic DNA (RAPD) fingerprints were generated from a range of P. parasitica isolates from different Brassica species. Reaction conditions, in particular DNA template, primer and Mg2+ concentrations, were optimized to ensure that amplifications were reproducible. Possible artefacts arising through host plant DNA were assessed by including such DNA in control reactions. Confirmation that diagnostic RAPD bands were generated from fungal DNA was also obtained by Southern hybridization of a RAPD band to genomic fungal DNA. By screening 20 decamer primers, 2 were found to detect sufficient genetic variation to allow complete differentiation between pathotypes. These results illustrate the potential value of RAPDs for detecting polymorphisms between isolates of a non-culturable plant pathogenic fungus.  相似文献   

16.
The cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae), is one of the most important pests in European winter oilseed rape production. Adult beetles feed on young leaves whereas larvae mine within the petioles and stems. Larval infestation can cause significant crop damage. In this study, the host quality for CSFB of four oilseed rape (Brassica napus L.) cultivars and seven other brassicaceous species with different glucosinolate (GSL) profiles was assessed under controlled conditions. Larval instar weights and mortality were measured after 14 and 21 days of feeding in the petioles of test plants. To study the impact of GSL on the performance of larvae, the GSL contents in petioles from non-infested and infested plants were analysed before, and 21 days after, the start of larval infestation. Larval performance was not significantly different between the four cultivars of oilseed rape, but differed considerably among the other brassicaceous species tested. In comparison to the weight of larvae in the standard B. napus cv. Robust, the larval weight was higher in turnip rape (Brassica rapa L. var. silvestris) and significantly reduced in white mustard (Sinapis alba L.), oil radish (Raphanus sativa L. var. oleiformis), and cabbage (Brassica oleracea L. convar. capitata var. alba). The duration of larval development increased in white mustard and oilseed radish. The GSL profiles of the petioles showed little difference between non-infested and infested plants of oilseed rape whereas the content of aliphatic GSL increased in the infested turnip rape plants. In contrast, the aliphatic and benzenic GSL decreased in infested Indian rape (B. rapa subsp. dichotoma Roxb.). Larval weight was not correlated with the total GSL content of plants, neither before infestation nor 21 days after. Larval weight was positively correlated with progoitrin and 4-hydroxyglucobrassicin. White mustard, which provides inferior host quality for larval development, has the potential to introduce insect resistance into high-yielding oilseed rape cultivars in breeding programmes.  相似文献   

17.
Ascospores of Pyrenopeziza brassicae were produced in apothecia (cup‐shaped ascomata) on oilseed rape debris. The conidia, which were morphologically identical to the ascospores, were produced in acervular conidiomata was greater than for lesions caused by ascospores. In June 2000, on the ground under a crop with light on the surface of living oilseed rape tissues. Ascospores were more infective than conidia on oilseed rape leaves. The proportion of lesions caused by conidia located on leaf veins leaf spot, numbers of petioles with apothecia decreased with increasing distance into the crop from the edge of pathways. Air‐borne ascospores of P. brassicae were first collected above debris of oilseed rape affected with light leaf spot on 5 October 1998 and 18 September 1999,12 or 23 days, respectively, after the debris had been exposed outdoors. P. brassicae conidia were first observed on leaves of winter oilseed rape on 6 January 1999 and 15 February 2000, respectively, after plots had been inoculated with debris in November 1998 and October 1999. In 1991/92, numbers of ascospores above a naturally infected crop were small from January to April and increased in June and July. P. brassicae conidia were first observed in February and the percentage plants with leaves, stems or pods with light leaf spot increased greatly in May and June. In 1992/93, in a crop inoculated with debris, numbers of airborne ascospores were small from October to January and increased from April to June. P. brassicae conidia were first observed on leaves in late November and light leaf spot was seen on stems and pods in March and June 1993, respectively.  相似文献   

18.
Concerns about the negative effects of chemical control of oilseed rape (Brassica napus L.) pests on non-target species, human safety, and development of insecticide resistance, require alternative control strategies such as the use of trap crops and biocontrol to be developed. Psylliodes chrysocephala(L.) (Coleoptera: Chrysomelidae) (cabbage stem flea beetle) and Ceutorhynchus pallidactylus (Marsh.) (Coleoptera: Curculionidae) (cabbage stem weevil) are two major stem-mining pests of oilseed rape. This study investigated the phenology of these pests and their main parasitoids in the UK, the potential use of turnip rape (Brassica rapa L.) as a trap crop to reduce oilseed rape infestation, and the effects of insecticide treatment on pest incidence and larval parasitism. Water trap samples, plant dissections and pest larval dissections were done to determine: the incidence of adult pests and their parasitoids, the level of plant infestation by the pests and percentage larval parasitism, respectively. The turnip rape trap crop borders reduced P. chrysocephalabut not C. pallidactylus infestation of oilseed rape plots. Treatment of the trap crop with insecticide had little effect on either pest or parasitoid incidence in the oilseed rape. TersilochusmicrogasterSzép. andT. obscurator Aub. (Hymenoptera: Ichneumonidae) were the main larval parasitoids of P. chrysocephalaand C. pallidactylus, respectively. Tersilochus microgasteris reported for the first time in the UK. The implications for integrated pest management are discussed.  相似文献   

19.
A simplified method for the quantitative assessment of the fungal lipid ergosterol was used to assess the levels of infection in tissue cultures of oilseed rape (Brassica napus ssp. oleifera) inoculated with Leptosphaeria maculans. The growth of L. maculans in liquid culture throughout a 36-day period correlated well (r = 0·92) with the amount of ergosterol extracted from the mycelium. There were significant differences (P < 0·05) in the amount of ergosterol extracted from infected thin cell layer (TCL) explants and callus tissue of two resistant and three susceptible cultivars of oilseed rape. Amounts of ergosterol extracted from resistant cultivars were < 100 (g and from susceptible > 100 (g. The mean amounts of ergosterol extracted from shoot cultures of two resistant and four susceptible cultivars were similar to those for TCL explants and callus tissue, although the values obtained were variable. This technique can be used in in vitro breeding programmes to accurately assess the resistance of tissue cultures of B. napus to L. maculans and could also have value in conventional breeding programmes.  相似文献   

20.
Protocols for selecting plant tissues of winter oilseed rape (Brassica napus subsp. oleifera) with resistance to Leptosphaeria maculans by either stem or leaf inoculation of both soil and in vitro grown plant material are described. The stem inoculation procedure gave good correlation (r = 0. 92) between the 50 day stem disease scores of eight out of nine cultivars of soil grown winter oilseed rape inoculated with isolate 41A4 of L. maculans and the N. A. B. esistance ratings or resistance data from field trials. The exception was the cultivar Liradonna. Inoculation of stems of five cultivars with isolates 41A4, 433 and 478 indicated a range of isolate virulence 478 > 41A4 > 433. This was the inverse of that observed in leaf inoculations. Application of the stem inoculation procedure to in vitro shoot cultures allowed differentiation of resistant and susceptible cultivars, including the cultivar Liradonna, after 20 days incubation at 20°C. The protocol was also applicable to plantlets regenerated from thin cell layer explants grown in vitro. Inoculations with isolate 433 allowed the differentiation of resistant, intermediately resistant and susceptible leaf material of soil grown plants, when leaf discs from young leaves were incubated on water agar supplemented with BAP (1 × 10?5 M) at 25°C for 10 days. Intermediately resistant leaves were resistant after 10 days and susceptible after 15 days of incubation. Leaves of shoot cultures grown in vitro were more susceptible than the corresponding soil grown material. However, inoculation of old leaves with isolate 41A4 (an isolate of less virulence on leaves than 433) distinguished the cultivars after 15 days of incubation. These protocols allow the accurate assessment of resistance to L. maculans at the stem or leaf level and are of use in traditional as well as in vitro selection programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号