首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In Europe, Borrelia burgdorferi sensu lato (sl) the agent of Lyme borreliosis circulates in endemic areas between Ixodes ricinus ticks and a large number of vertebrate hosts upon which ticks feed. Currently, at least 12 different Borrelia species belonging to the complex B. burgdorferi sl have been identified among which seven have been detected in I. ricinus: B. burgdorferi sensu stricto (ss), B. garinii, B. afzelii, B. valaisiana, B. spielmanii and B. bissettii. A few dozens of vertebrate hosts have been identified as reservoirs for these Borrelia species. Specific associations were rather early observed between hosts, ticks and borrelia species, like for example between rodents and B. afzelii and B. burgdorferi ss, and between birds and B. garinii and B. valaisiana. The complement present in the blood of the hosts is the active component in the Borrelia host specificity. Recent studies confirmed trends toward specific association between Borrelia species and particular host, but also suggested that loose associations may be more frequent in transmission cycles in nature than previously thought.  相似文献   

2.
Ixodes ricinus ticks and mice can be infected with both Borrelia burgdorferi sensu stricto and Borrelia garinii. The effect of coinfection with these two Borrelia species on the development of murine Lyme borreliosis is unknown. Therefore, we investigated whether coinfection with the nonarthritogenic B. garinii strain PBi and the arthritogenic B. burgdorferi sensu stricto strain B31 alters murine Lyme borreliosis. Mice simultaneously infected with PBi and B31 showed significantly more paw swelling and arthritis, long-standing spirochetemia, and higher numbers of B31 spirochetes than did mice infected with B31 alone. However, the number of PBi spirochetes was significantly lower in coinfected mice than in mice infected with PBi alone. In conclusion, simultaneous infection with B. garinii and B. burgdorferi sensu stricto results in more severe Lyme borreliosis. Moreover, we suggest that competition of the two Borrelia species within the reservoir host could have led to preferential maintenance, and a rising prevalence, of B. burgdorferi sensu stricto in European I. ricinus populations.  相似文献   

3.
The epidemiology of lyme borreliosis   总被引:7,自引:0,他引:7  
The tick-transmitted bacterial infection known as Lyme disease, or Lyme borreliosis, has recently emerged as the leading arthropod-borne disease in Europe and North America. Several thousand new cases of human Lyme disease are reported each year from Europe and the USA. The causative agent, Borrelia burgdorferi, has been isolated from several species of mammals, birds, ticks and insects and, in this article, Thomas Jaenson discusses the geographical differences in the epidemiology of the infection.  相似文献   

4.
The tick Ixodes ricinus is responsible for the transmission and maintenance of a wide variety of pathogenic organisms in the Northern Hemisphere, among which Lyme disease represents a major threat to humans. Despite numerous studies, the epidemiology of the different bacterial species responsible for this disease remains unclear. Recent evidence for a sex-biased genetic structure of its European vector leads us to analyse the consequences of this pattern on Borrelia transmission. Here we show that male and female ticks are not equivalently infected by Borrelia burgdorferi, that Borrelia afzelii affects tick migration capabilities, especially for the most vagile sex (i.e., male) and that Lyme borreliosis agents are consequently vectorised in a much more complex way than usually thought. Such results change the epidemiological perception of Lyme borreliosis and suggest new co-evolutionary pathways between the ticks and the borrelia.  相似文献   

5.
Many epidemiological studies were conducted for studying Lyme borreliosis (LB) which represents a new global public health problem. It is now the most common vector-borne disease in Europe and North America. The causative agent Borrelia burgdorferi sl is a bacterial species complex comprising 12 delineated and named species. In North Africa, few studies based on clinical and serological features, have suggested that LB could occur. Indeed, recent studies conducted in Tunisia, Algeria and Morocco have showm that Ixodes ricinus is present in cooler and humid area of these regions. These studies also revealed that this species is a vector of B. burgdorferi sl with high prevalence of infection. Using IFI and PCR tests, the mean rate of Borrelia-infection ranged from 50 to 60% in I. ricinus adult collected in Tunisia and Morocco and from 30 to 40% in nymphs; in contrast, the prevalence in larvae is less than 2.5%. Several strains of B. burgdorfer were isolated from adult and nymph I ricinus collected in Tunisia and Morocco. The identification of these strains and DNAs directly extracted from Ixodes was done by PCR-RFLP and sequence analysis. The results showed that B. lusitaniae (genotypes Poti B2 and Poti B3) is the predominant species circulating in I. ricinus in Tunisia and Morocco, B. garinii and B. burgdorferi ss and B lusitaniae were also present but very rare. These results provide the evidence for the existence of B. burgdorferi sl in North Africa; however, the impact of LB in the human population seem to be negligible and the seroprevalence of Borrelia in forest workers (considered as population at high risk) in Tunisia is less than 4%.  相似文献   

6.
We studied 48 Borrelia isolates that were associated with Lyme borreliosis or were isolated from ticks and identified three DNA relatedness groups by using the S1 nuclease method. The three DNA groups (genospecies) were associated with specific rRNA gene restriction patterns, protein electrophoresis patterns, and patterns of reactivity with murine monoclonal antibodies. Genospecies I corresponded to Borrelia burgdorferi sensu stricto since it contained the type strain of this species (strain ATCC 35210); this genospecies included 28 isolates from Europe and the United States. Genospecies II was named Borrelia garinii sp. nov. and included 13 isolates from Europe and Japan. Genospecies III (group VS461) included seven isolates from Europe and Japan.  相似文献   

7.
In this study we have developed a new Restriction-Fragment-Length-Polymorphism (RFLP) genotyping method for rapid detection and identification of Borrelia genospecies present as unique species or as co-infection in multiple specimens obtained simultaneously from 29 individual patients affected by early or late Lyme borreliosis (LB). The target of the RFLP-genotyping was the heterogeneous plasmid located ospA gene, thus we developed a method able to detect and differentiate between six clinically relevant Borrelia genospecies circulating in Europe, B. burgdorferi sensu stricto, B. garinii, B. afzelii, B. valaisiana, B. bissettii and B. spielmanii. In this study Borrelia DNA could be detected by PCR in at least one specimen of each patient, except in one case of neuroborreliosis (NB); blood samples gave the highest sensitivity in all patient groups. The genotyping indicated that B. afzelii was present in 8 patients with skin involvement, B. garinii in 2 cases of NB and 4 cases with skin involvement, B. burgdorferi sensu stricto was detected in one patient with skin involvement and another with Lyme arthritis. Different Borrelia species in distinct specimens were identified in one patient with EM. The RFLP analysis of 11 patients revealed mixed patterns, which suggested pluri-infection with different Borrelia species.  相似文献   

8.
Lyme borreliosis is the most important vector-borne disease caused by spirochetes within the Borrelia burgdorferi sensu lato (B. burgdorferi sl) complex. There is strong evidence that different species of this group of genetically diverse spirochetes are involved in distinct clinical manifestations of the disease. In order to differentiate species within this bacterial complex, we developed a real-time-PCR protocol, which targets the hbb gene. We designed a fluorescein-labeled probe specific of a region of this gene harboring a polymorphism linked to species. An internally Red640 labeled primer allowed a fluorescence resonance energy transfer to occur. The sensitivity of this method was in the range of 10 bacteria per assay. After amplification, a melting curve was generated for genotyping. Analysis of these melting curves clearly allowed the distinction between the main European species of B. burgdorferi sl. One hundred seventy tick extracts were analysed by this hbb-based method and in parallel by amplification of the 5S-23S intergenic spacer and RFLP analyses. There was a good correlation between these two methods. We conclude that this hbb-based real-time-PCR is suitable for epidemiological studies on field-collected ticks, although rare mutations in the genomic sequence spanned by the probe could lead to misidentification.  相似文献   

9.
Borrelia burgdorferi sensu lato (s.l.), the tick-borne agent of Lyme borreliosis, is a bacterial species complex comprising 11 genospecies. Here, we discuss whether the delineation of genospecies is ecologically relevant. We provide evidence that B. burgdorferi s.l. is structured ecologically into distinct clusters that are host specific. An immunological model for niche adaptation is proposed that suggests the operation of complement-mediated selection in the midgut of the feeding tick. We conclude that vertebrate hosts rather than tick species are the key to Lyme borreliosis spirochaete diversity.  相似文献   

10.
In the two years after publication of the genome sequence of Borrelia burgdorferi and reports on human field trials of a vaccine against Lyme borreliosis, there has been further progress in understanding of host-parasite interactions during Lyme borreliosis and relapsing fever. Some mechanisms that Borrelia spirochetes use to avoid elimination and to persist in the host are novel. In addition, the recent discovery of antigenic variation in the Lyme disease agent B. burgdorferi adds to the complexity of the possible virulence properties of this human pathogen.  相似文献   

11.
Growth kinetic analyses of Borrelia burgdorferi indicated that this bacterium can utilize a limited number of carbon sources for energy: the monosaccharides glucose, mannose, and N-acetylglucosamine, the disaccharides maltose and chitobiose, and glycerol. All of these carbohydrates are likely to be available to B. burgdorferi during infection of either vertebrate and arthropod hosts, enabling development of a model describing energy sources potentially used by the Lyme borreliosis spirochete during its natural infectious cycle.  相似文献   

12.
Until recently, three spirochete genospecies were considered to be the causative agents of Lyme borreliosis (LB) in Europe: Borrelia burgdorferi sensu stricto, Borrelia afzelii and Borrelia garinii . However, the DNA of Borrelia valaisiana, Borrelia lusitaniae, Borrelia spielmanii and Borrelia bissettii has already been detected in samples of human origin, or the spirochetes were isolated from the patients with symptoms of LB. Molecular analysis of 12 selected serum samples collected in the regional hospital confirmed the presence of B. bissettii DNA in cases of single and multiple infection in patients with symptomatic borreliosis or chronic borrelial infection. The presence of B. bissettii as a single strain in patients provides strong support of the fact that B. bissettii might be a causative agent of the disease. After the first isolation of B. bissettii from the samples of human origin in Slovenia, following the detection of this species in cardiac valve tissue of the patient with endocarditis and aortic valve stenosis in the Czech Republic, here we present additional molecular data supporting the involvement of B. bissettii in LB in Europe.  相似文献   

13.
Lyme borreliosis is caused by multiple species of the spirochete bacteria Borrelia burgdorferi sensu lato. The spirochetes are transmitted by ticks to vertebrate hosts, including small‐ and medium‐sized mammals, birds, reptiles, and humans. Strain‐to‐strain variation in host‐specific infectivity has been documented, but the molecular basis that drives this differentiation is still unclear. Spirochetes possess the ability to evade host immune responses and colonize host tissues to establish infection in vertebrate hosts. In turn, hosts have developed distinct levels of immune responses when invaded by different species/strains of Lyme borreliae. Similarly, the ability of Lyme borreliae to colonize host tissues varies among different spirochete species/strains. One potential mechanism that drives this strain‐to‐strain variation of immune evasion and colonization is the polymorphic outer surface proteins produced by Lyme borreliae. In this review, we summarize research on strain‐to‐strain variation in host competence and discuss the evidence that supports the role of spirochete‐produced protein polymorphisms in driving this variation in host specialization. Such information will provide greater insights into the adaptive mechanisms driving host and Lyme borreliae association, which will lead to the development of interventions to block pathogen spread and eventually reduce Lyme borreliosis health burden.  相似文献   

14.
Due to the high Lyme borreliosis incidence in Alsace, in northeastern France, we investigated in 2003-2004 three cantons in this region in order to determine the density of Ixodes ricinus ticks infected by Borrelia burgdorferi sensu lato and Anaplasmataceae. The peak density of nymphs infected by B. burgdorferi sensu lato at Munster and Guebwiller, where the disease incidence was high, was among the highest reported in Europe (105 and 114 per 100 m(2), respectively). In contrast, the peak density of infected nymphs was low in the canton of Dannemarie (5/100 m(2)), where the disease incidence was low. The two main species detected in ticks were Borrelia afzelii, more frequent in nymphs, and Borrelia garinii, more frequent in adult ticks. The rates of tick infection by Anaplasma phagocytophilum were 0.4% and 1.2% in nymphs and adults, respectively.  相似文献   

15.
The evolutionary ecology of many emerging infectious diseases, particularly vector-borne zoonoses, is poorly understood. Here, we aim to develop a biological, process-based framework for vector-borne zoonoses, using Borrelia burgdorferi sensu lato (s.l.), the causative agent of Lyme borreliosis in humans, as an example. We explore the fundamental biological processes that operate in this zoonosis and put forward hypotheses on how extrinsic cues and intrinsic dynamics shape B. burgdorferi s.l. populations. Additionally, we highlight possible epidemiological parallels between B. burgdorferi s.l. and other vector-borne zoonotic pathogens, including West Nile virus.  相似文献   

16.
Serum samples from 93 red foxes (Vulpes vulpes) and nine gray foxes (Urocyon cinereoargenteus) trapped in Wisconsin and 23 coyotes (Canis latrans) trapped in Wisconsin and Minnesota were tested for antibodies to Borrelia sp. with an indirect fluorescent antibody test which used Borrelia burgdorferi as the whole-cell antigen. Seven red foxes (8%) and two coyotes (9%) had antibody titers greater than or equal to 1:64. All the positive samples were from areas known to be endemic for human Lyme disease. Implications for the epizootiology of Lyme borreliosis in wild canids are not well understood, but even if these species are not actual reservoirs of B. burgdorferi they could serve to increase the range of the vector and establish new endemic foci of the spirochete.  相似文献   

17.
In Europe, Borrelia burgdorferi genospecies causing Lyme borreliosis are mainly transmitted by the tick Ixodes ricinus. Since its discovery, B. burgdorferi has been the subject of many epidemiological studies to determine its prevalence and the distribution of the different genospecies in ticks. In the current study we systematically reviewed the literature on epidemiological studies of I. ricinus ticks infected with B. burgdorferi sensu lato. A total of 1,186 abstracts in English published from 1984 to 2003 were identified by a PubMed keyword search and from the compiled article references. A multistep filter process was used to select relevant articles; 110 articles from 24 countries contained data on the rates of infection of I. ricinus with Borrelia in Europe (112,579 ticks), and 44 articles from 21 countries included species-specific analyses (3,273 positive ticks). These data were used to evaluate the overall rate of infection of I. ricinus with Borrelia genospecies, regional distributions within Europe, and changes over time, as well as the influence of different detection methods on the infection rate. While the infection rate was significantly higher in adults (18.6%) than in nymphs (10.1%), no effect of detection method, tick gender, or collection period (1986 to 1993 versus 1994 to 2002) was found. The highest rates of infection of I. ricinus were found in countries in central Europe. B. afzelii and B. garinii are the most common Borrelia species, but the distribution of genospecies seems to vary in different regions in Europe. The most frequent coinfection by Borrelia species was found for B. garinii and B. valaisiana.  相似文献   

18.
Background: Borrelia burgdorferi sensu lato is a group of at least twelve closely related species some of which are responsible for Lyme disease, the most frequent zoonosis in Europe and the USA. Many of the biological features of Borrelia are unique in prokaryotes and very interesting not only from the medical viewpoint but also from the view of molecular biology. Methods: Relevant recent articles were searched using PubMed and Google search tools. Results and Conclusion: This is a review of the biological, genetic and physiological features of the spirochete species group, Borrelia burgdorferi sensu lato. In spite of a lot of recent articles focused on B. burgdorferi sensu lato, many features of Borrelia biology remain obscure. It is one of the main reasons for persisting problems with prevention, diagnosis and therapy of Lyme disease. The aim of the review is to summarize ongoing current knowledge into a lucid and comprehensible form.  相似文献   

19.
In order to evaluate the presence of specific IgG antibodies to Borrelia burgdorferi in patients with clinical manifestations associated with Lyme borreliosis in Cali, Colombia, 20 serum samples from patients with dermatologic signs, one cerebrospinal fluid (CSF) sample from a patient with chronic neurologic and arthritic manifestations, and twelve serum samples from individuals without clinical signs associated with Lyme borreliosis were analyzed by IgG Western blot. The results were interpreted following the recommendations of the Centers for Diseases Control and Prevention (CDC) for IgG Western blots. Four samples fulfilled the CDC criteria: two serum specimens from patients with morphea (localized scleroderma), the CSF from the patient with neurologic and arthritic manifestations, and one of the controls. Interpretation of positive serology for Lyme disease in non-endemic countries must be cautious. However these results suggest that the putative "Lyme-like" disease may correlate with positivity on Western blots, thus raising the possibility that a spirochete genospecies distinct from B. burgdorferi sensu stricto, or a Borrelia species other than B. burgdorferi sensu lato is the causative agent. Future work will focus on a survey of the local tick and rodent population for evidence of spirochete species that could be incriminated as the etiologic agent.  相似文献   

20.
The role of small mammals as reservoir hosts for Borrelia burgdorferi was investigated in several areas where Lyme disease is endemic in northern Spain. A low rate of infestation by Ixodes ricinus nymphs was found in the small mammal populations studied that correlated with the near-absence of B. burgdorferi sensu lato in 184 animals tested and with the lack of transmission of B. burgdorferi sensu lato to I. ricinus larvae that fed on them. In contrast, questing ticks collected at the same time and in the same areas were found to carry a highly variable B. burgdorferi sensu lato repertoire (B. burgdorferi sensu stricto, Borrelia garinii, Borrelia valaisiana, and Borrelia afzelii). Interestingly, the only isolate obtained from small mammals (R57, isolated from a bank vole) grouped by phylogenetic analyses with other Borrelia species but in a separate clade from the Lyme disease and relapsing fever organisms, suggesting that it is a new species. This new agent was widely distributed among small mammals, with infection rates of 8.5 to 12% by PCR. Moreover, a high seroprevalence to B. burgdorferi sensu lato was found in the animal sera, suggesting cross-reactivity between B. burgdorferi sensu lato and R57. Although small mammals do not seem to play an important role as reservoirs for B. burgdorferi sensu lato in the study area, they seem to be implicated in the maintenance of spirochetes similar to R57.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号