首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5′ upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TRα1, TRβ1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TRα1, TRβ1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.  相似文献   

5.
6.
SHP (small heterodimer partner, NR1I0) is an atypical orphan member of the nuclear receptor subfamily in that it lacks a DNA-binding domain. It is mostly expressed in the liver, where it binds to and inhibits the function of nuclear receptors. SHP is up-regulated by primary bile acids, through the activation of their receptor farnesoid X receptor, leading to the repression of cholesterol 7alpha-hydroxylase (CYP7alpha) expression, the rate-limiting enzyme in bile acid production from cholesterol. PXR (pregnane X receptor, NR1I2) is a broad-specificity sensor that recognizes a wide variety of synthetic drugs as well as endogenous compounds such as bile acid precursors. Upon activation, PXR induces CYP3A and inhibits CYP7alpha, suggesting that PXR can act on both bile acid synthesis and elimination. Indeed, CYP7alpha and CYP3A are involved in biochemical pathways leading to cholesterol conversion into primary bile acids, whereas CYP3A is also involved in the detoxification of toxic secondary bile acid derivatives. Here, we show that PXR is a target for SHP. Using pull-down assays, we show that SHP interacts with both murine and human PXR in a ligand-dependent manner. From transient transfection assays, SHP is shown to be a potent repressor of PXR transactivation. Furthermore, we report that chenodeoxycholic acid and cholic acid, two farnesoid X receptor ligands, induce up-regulation of SHP and provoke a repression of PXR-mediated CYP3A induction in human hepatocytes as well as in vivo in mice. These results reveal an elaborate regulatory cascade, tightly controlled by SHP, for both the maintenance of bile acid production and detoxification in the liver.  相似文献   

7.
8.
CAR and PXR: xenosensors of endocrine disrupters?   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
11.
A putative laccase cDNA from a white-rot basidiomycete, Trametes versicolor, that consisted of 1,769 nucleotides was cloned using the rapid amplification of cDNA ends (RACE)-PCR method. The deduced amino acid sequence had 4 putative copper binding regions, which are common to fungal laccases. In addition, the sequence was 57 approximately 97 % homologous to sequences of other T. versicolor laccases. Additionally, the expression of laccase and manganese peroxidase in this fungus were both greatly increased under degrading conditions for bisphenol A, nonylphenol and two phthalic esters (benzylbutylphthalate and diethylphthalate), all of which are reportedly endocrine disrupting chemicals (EDCs). Furthermore, the estrogenic activities of the EDCs also decreased rapidly during incubation when examined in a two-hybrid yeast system. Finally, kojic acid inhibited the removal of estrogenic activities generated by bisphenol A and nonylphenol, which confirmed that laccase was involved in the degradation of EDCs in T. versicolor.  相似文献   

12.
This study reports that dexamethasone (DEX) significantly induces CYP3A11, CYP3A13 and CYP3A25 mRNA expression in male and female 4 days, 3 weeks and 18 weeks old C57BL/6J mice. Furthermore, CYP3A activity, as measured by erythromycin-N-demethylation, is also significantly increased. PXR, RXRalpha and CAR are known to be involved in the induction of CYP3As. Here we report nuclear receptors PXR and RXRalpha but not CAR demonstrate gender- and age-dependent expression. Also, treatment of C57BL/6J mice with DEX induces PXR but not RXRalpha or CAR. In summary, we demonstrate DEX is not only able to up-regulate CYP3A expression and activity, but also the nuclear receptor PXR through which it may exert this effect. Furthermore, the gender- and age-dependent pattern of basal PXR and RXRalpha expression is similar to the 3 CYP3As analysed.  相似文献   

13.
An orphan nuclear receptor, termed the pregnane X receptor (PXR), has recently been cloned from mouse and human and defines a novel steroid signaling pathway (Cell 92, 73-82, 1998; Proc. Natl. Acad. Sci. USA 95, 12208-122313, 1998). Transient cotransfection experiments demonstrate that the PXR responds to structurally dissimilar compounds and confers the induction of cytochrome P4503A (CYP3A), a subfamily of enzymes that involve the metabolism of two-thirds of drugs and other xenobiotics. In this report, we describe the molecular cloning, tissue distribution, and xenobiotic regulation of a rat PXR designated rPXR-1. rPXR-1 exhibits a 95% sequence identity with the mouse PXR, but only 79% identity with the human PXR, providing the molecular basis that rats and mice have a similar CYP3A induction profile but differ from humans. rPXR-1 gene was expressed abundantly in liver, intestine, and, to a lesser extent, kidney, lung, and stomach. The tissue distribution and the relative abundance of rPXR-1 mRNA among these tissues resemble those of CYP3A, suggesting that PXR is important not only for induction but also for constitutive expression of these enzymes. Xenobiotics known to induce liver microsomal enzymes showed differential effects on the rPXR-1 expression as determined by Northern blot analysis. Dexamethasone, for example, increased the accumulation of rPXR-1 mRNA, whereas troleandomycin slightly suppressed it. Compounds that increase PXR expression (inducers) and compounds that interact with PXR (ligands) likely have synergistic effects on CYP3A induction, which provides a novel molecular explanation for drug-drug interactions.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号