首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Puroindolines (PINs) are the main components of the wheat grain hardness locus (Ha) and have in vitro antimicrobial activity against bacteria and fungi. Here, we examined the effect of variation in PINA and/or PINB content upon Penicillium sp. seed fungal growth inhibition. The Penicillium sp. assays were germination assays performed after incubating seeds in Penicillium sp. contaminated soil. The first set of wheat genotypes consisted of two sets of transgenic isolines created in the varieties ‘Bobwhite’ and ‘Hi‐Line’ having over‐expression of PINA and/or PINB. The second set of genotypes consisted of near‐isogenic lines (NILs) varying for mutations in PINA or PINB created in the varieties ‘Explorer’ and ‘Hank’. After incubation in Penicillium sp.‐infected soil, transgenic wheat seeds over‐expressing PINA in both ‘Hi‐Line’ and ‘Bobwhite’ and both PINs in ‘Hi‐Line’ exhibited significantly reduced fungal infection and increased germination. No significant differences in Penicillium sp. infection or germination rates were observed in seeds of the NILs. The results indicate that puroindolines native role in seeds is to increase seed viability and that when over‐expressed as transgenes, the puroindolines are effective antifungal proteins.  相似文献   

2.
Kernel texture of wheat is a primary determinant of its technological properties. Soft kernel texture phenotype results when the Puroindoline a and Puroindoline b genes are present and encode the wild-type puroindolines PINA and PINB, respectively, and various mutations in either or both gene(s) result in hard phenotypes. A wealth of information is now available that furthers our understanding regarding the spatial and temporal regulation of expression of Puroindoline genes. Through the use of model membranes and synthetic peptides we also have a clearer understanding of the significance of the cysteine backbone, the tryptophan-rich domain (TRD) and the helicoid tertiary structures of PIN proteins in relation to their membrane-active properties. Many studies suggest individual yet co-operative modes of action of the PIN proteins in determining kernel texture, and significant evidence is accumulating that the proteins have in vivo and in vitro antimicrobial activities, shedding light on the biological roles of this unique ensemble of proteins. The puroindolines are now being explored for grain kernel texture modifications as well as antimicrobial activities.  相似文献   

3.
Antimicrobial peptides and proteins are being studied with increasing interest because of their broad range antimicrobial activity. Among plant antimicrobial proteins, the wheat seed polypeptides, puroindoline a and puroindoline b, are particularly interesting because of their established antibacterial activity. In this paper we describe different strategies used to clone His tagged and GST tagged puroindolines obtaining 1.5 mg recombinant protein from 1 l culture. The antimicrobial activity of recombinant and native puroindolines was comparable.  相似文献   

4.
Wheat seeds contain different lipid binding proteins that are low molecular mass, basic and cystine-rich proteins. Among them, the recently characterized puroindolines have been shown to inhibit the growth of fungi in vitro and to enhance the fungal resistance of plants. Experimental data, using lipid vesicles, suggest that this antimicrobial activity is related to interactions with cellular membranes, but the underlying mechanisms are still unknown. This paper shows that extracellular application of puroindolines on voltage-clamped Xenopus laevis oocytes induced membrane permeabilization. Electrophysiological experiments, on oocytes and artificial planar lipid bilayers, suggest the formation, modulated by voltage, of cation channels with the following selectivity: Cs(+) > K(+) > Na(+) > Li(+) > choline = TEA. Furthermore, this channel activity was prevented by addition of Ca(2+) ions in the medium. Puroindolines were also able to decrease the long-term oocyte viability in a voltage-dependent manner. Taken together, these results indicate that channel formation is one of the mechanisms by which puroindolines exert their antimicrobial activity. Modulation of channel formation by voltage, Ca(2+), and lipids could introduce some selectivity in the action of puroindolines on natural membranes.  相似文献   

5.
6.
The broad‐spectrum activity of antimicrobial peptides (AMPs) and low probability of development of host resistance make them excellent candidates as novel bio‐control agents. A number of AMPs are found to be cationic, and a small proportion of these are tryptophan‐rich. The puroindolines (PIN) are small, basic proteins found in wheat grains with proposed roles in biotic defence of seeds and seedlings. Synthetic peptides based on their unique tryptophan‐rich domain (TRD) display antimicrobial properties. Bacterial endospores and biofilms are highly resistant cells, with significant implications in both medical and food industries. In this study, the cationic PIN TRD‐based peptides PuroA (FPVTWRWWKWWKG‐NH2) and Pina‐M (FSVTWRWWKWWKG‐NH2) and the related barley hordoindoline (HIN) based Hina (FPVTWRWWTWWKG‐NH2) were tested for effects on planktonic cells and biofilms of the common human pathogens including Pseudomonas aeruginosa, Listeria monocytogenes and the non‐pathogenic Listeria innocua. All peptides showed significant bactericidal activity. Further, PuroA and Pina‐M at 2 × MIC prevented initial biomass attachment by 85–90% and inhibited >90% of 6‐h preformed biofilms of all three organisms. However Hina, with a substitution of Lys‐9 with uncharged Thr, particularly inhibited Listeria biofilms. The PIN based peptides were also tested against vegetative cells and endospores of Bacillus subtilis. The results provided evidence that these tryptophan‐rich peptides could kill B. subtilis even in sporulated state, reducing the number of viable spores by 4 log units. The treated spores appeared withered under scanning electron microscopy. The results establish the potential of these tryptophan‐rich peptides in controlling persistent pathogens of relevance to food industries and human health. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Luo L  Zhang J  Yang G  Li Y  Li K  He G 《Molecular biology reports》2008,35(2):195-200
The purouindoline gene (pin) coding for puroindoline proteins (PINs) is located on chromosome 5D, controls grain hardness, and the PINs have in vitro antimicrobial activity against gram-positive (G+) bacteria, gram-negative (G-) bacteria and fungi. Wheat leaf rust caused by Puccinia triticina is one of the most important fungal diseases for common wheat with AABBDD genomes. Tetraploid wheat (AABB genome) varieties Luna and Venusia were transformed with the purouindoline a (pinA) gene by bombardment, express PINA consititutively. Transgenic plants showed enhanced response to leaf rust in greenhouse and field. Comparative study of harvesting parameters showed significant differences between transgenic and control plants. These indexes were significantly lower (P < 0.05) in control plants than that in transgenic plants, which suggests that they are significantly affected by pinA gene and that the puroindoline a protein (PINA) can effectively inhibit in vivo the growth of fungal, and the transgenic tetraploid wheat can grow well in Hubei Province, Central China, where the tetraploid wheat varieties Luna and Venusia have poor yield due to their disease-sensitivity.  相似文献   

8.
A series of peptide dendrimers and their conjugates with antimicrobial agent FMDP (N3‐(4‐methoxyfumaroyl)‐(S)‐2,3‐diamino‐propanoic acid) were synthesized. The obtained compounds were tested for the antibacterial and antifungal activity. All novel dendrimers displayed much better activity against the tested strains than FMDP itself. Moreover, their conjugates with FMDP also exhibited antimicrobial activity. The most promising molecules were tested against a broad selection of fungal strains. The analysis of their antifungal properties indicates that the examined molecules are efficient growth inhibitors of fluconazole‐resistant hospital‐acquired strains. Moreover, an application of amphiphilic branched peptides such as FMDP carriers suggests that transport mechanism involves more likely the cell membrane perturbation than the mediation of the specific transport proteins. The activity of obtained compounds strongly depends on the specific structure of the molecule.  相似文献   

9.
Among 31 3,4-dihydro-s-triazinobenzimidazole derivatives tested 12 compounds showedin vitro antimicrobial activity against G+ bacteria. Best results were obtained with substances containing naphthyl or halogenated phenyl group on the triazine ring. The tested derivatives had no significantin vitro antimicrobial activity against either the used G species or fungi.  相似文献   

10.
In vitro antimicrobial activity of 21 crude extracts obtained from seven taxa of the genus Teucrium (T. chamaedrys, T. montanum, T. arduini, T. polium, T. scordium subsp. scordium, T. scordium subsp. scordioides and T. botrys) was tested against bacterial and fungal species. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using a microdilution analysis method. Total phenolic content and flavonoid concentrations were measured spectrophotometrically. Total phenols were determined using Folin-Ciocalteu reagent and their amounts ranged from 28.49 up to 159.84 mg CA/g of extract (chlorogenic acid equivalent). The amounts of flavonoids ranged from 38.17 up to 190.45 mg RU/g of extract (rutin equivalent).The plant extracts showed greater potential of antibacterial than antifungal activity. A relationship was found between total phenolics and biological activity. The highest level of total phenols was measured in the methanol extracts, which demonstrated higher antimicrobial activity than acetone and ethyl acetate extracts. Staphylococcus aureus ATCC 25923 appeared to be the most sensitive organism. Our results indicate that Teucrium spp extracts are rich sources of phenolic compounds and are promising candidates for further development as natural antimicrobial agents.  相似文献   

11.
Wheat kernel texture, a major trait determining the end-use quality of wheat flour, is mainly influenced by puroindolines. These small basic proteins display in vitro lipid binding and antimicrobial properties, but their cellular functions during grain development remain unknown. To gain an insight into their biological function, a comparative proteome analysis of two near-isogenic lines (NILs) of bread wheat Triticum aestivum L. cv. Falcon differing in the presence or absence of the puroindoline-a gene (Pina) and kernel hardness, was performed. Proteomes of the two NILs were compared at four developmental stages of the grain for the metabolic albumin/globulin fraction and the Triton-extracted amphiphilic fraction. Proteome variations showed that, during grain development, folding proteins and stress-related proteins were more abundant in the hard line compared with the soft one. These results, taken together with ultrastructural observations showing that the formation of the protein matrix occurred earlier in the hard line, suggested that a stress response, possibly the unfolded protein response, is induced earlier in the hard NIL than in the soft one leading to earlier endosperm cell death. Quantification of the albumin/globulin fraction and amphiphilic proteins at each developmental stage strengthened this hypothesis as a plateau was revealed from the 500 °Cd stage in the hard NIL whereas synthesis continued in the soft one. These results open new avenues concerning the function of puroindolines which could be involved in the storage protein folding machinery, consequently affecting the development of wheat endosperm and the formation of the protein matrix.  相似文献   

12.
Antagonistic Bacillus strains were isolated from soil and analyzed for the purpose of determining whether they could be used as natural biological agents. Primary in vitro screening for antagonism of the isolates was performed against five phytopathogenic mould fungi. Strains TS 01 and ZR 02 exhibited the most pronounced inhibitory effects. They were identified as Bacillus subtilis on the basis of their morphological, cultural and physiology-biochemical properties as well as their hierarchical cluster analysis conducted by means of computer program SPSS. The antimicrobial activity of the strains from cultural medium and sterile filtrate were determined in vitro against a great number of predominantly phytopathogenic fungi and bacteria. TS 01 and ZR 02 strains exhibited very broad and at the same time degree varying antibiotic spectra of activities against both Gram-positive and Gram-negative microorganisms. Many of them were tested against sensitivity to the antimicrobial action of B. subtilis for the very first time. B. subtilis TS 01 and ZR 02 showed highest antifungal activity (sterile zone in diameter over 37 mm) against Alternaria solani, Botrytis cinerea, Monilia linhartiana 869, Phytophthora cryptogea 759/1 and Rhizoctonia sp. The most sensitive bacterial species were found to be Pseudomonas syringae pv. tomato Ro and Xanthomonas campestris with sterile zones 48.0 and 50.0 mm in diameter, respectively. The latter draws a conclusion that the isolated and identified Bacillus subtilis strains are promising natural biocontrol agents and should be further studied and tested for control of numerous plant diseases.  相似文献   

13.
The puroindoline proteins (PINA and PINB) of wheat display lipid-binding properties which affect the grain texture, a critical parameter for wheat quality. Interestingly, the same proteins also display antibacterial and antifungal properties, attributed mainly to their Tryptophan-rich domain (TRD). Synthetic peptides based on this domain also display selectivity towards bacterial and fungal cells and do not cause haemolysis of mammalian cells. However, the mechanisms of these activities are unclear, thus limiting our understanding of the in vivo roles of PINs and development of novel applications. This study investigated the mechanisms of antimicrobial activities of synthetic peptides based on the TRD of the PINA and PINB proteins. Calcein dye leakage tests and transmission electron microscopy showed that the peptides PuroA, Pina-M and Pina-W→F selectively permeabilised the large unilamellar vesicles (LUVs) made with negatively charged phospholipids mimicking bacterial membranes, but were ineffective against LUVs made with zwitterionic phospholipids mimicking eukaryotic membranes. Propidium iodide fluorescence tests of yeast (Saccharomyces cerevisiae) cells showed the peptides were able to cause loss of membrane integrity, PuroA and Pina-M being more efficient. Scanning electron micrographs of PINA-based peptide treated yeast cells showed the formation of pits or pores in cell membranes and release of cellular contents. Gel retardation assays indicated the peptides were able to bind to DNA in vitro, and the induction of filamental growth of E. coli cells indicated in vivo inhibition of DNA synthesis. Together, the results strongly suggest that the PIN-based peptides exert their antimicrobial effects by pore formation in the cell membrane, likely by a carpet-like mechanism, followed by intracellular mechanisms of activity.  相似文献   

14.
Studies of cellular and humoral immunity of the blow fly Calliphora vicina maggot revealed three groups of pharmacologically active substances that are perspective for use in medicine: alloferons, allocations, and antimicrobial peptides. Alloferons are the C. vicina peptide family selectively stimulating cytotoxic activity of the natural killer cells, an evolutionary ancient group of immunocompetent cells playing the key role in antiviral and antitumoral immunity of mammals. Alloferons are used in medicine for treatment of herpes viral infections and viral hepatitis B. Allostatins are synthetic peptides combining structural characteristics both of alloferons and of some mammalian immunoactive proteins. Allostatins, like alloferons, stimulate cytotoxic activity of the natural killer cells and interferon production, but, unlike alloferons, have pronounced adjuvant properties, i.e., the ability to enhance immune recognition of alien (non-self) antigens. At present, allostatins are used to enhance resistance of skin and mucous membranes to viral infections; in future, they might find use in immunotherapy of cancer and other diseases. One more group of proteins and peptides of the C. vicina maggot immune response, which are promising for use in medicine, serve antimicrobial peptides. The study of the preparation whose composition inclusdes defensins, cecropins, diptericins, and proline-rich peptides of C. vicina show that this type of drugs has great potential for treatment and prevention of antibiotic-resistant infections.  相似文献   

15.
Puroindolines are antimicrobial peptides that occur in wheat seed, and are characterized by broad antimicrobial activity. We describe the heterologous expression of puroindoline A and B in the Origami strain of Escherichia coli. The recombinant puroindolines showed the same antimicrobial activity on Staphylococcus epidermidis as compared to the native peptides (MIC(90)=30microgml(-1)). The bactericidal activity was 125microgml(-1) for recombinant puroindoline A and 42microgml(-1) for recombinant puroindoline B. Neither protein shows in vitro haemolytic activity or toxicity towards the murine macrophage cell line J774, but they are able to kill intracellular staphylococci. Our preliminary results suggest that recombinant puroindolines deserve further attention as alternatives to the conventional antibiotics in the control of S. epidermidis skin infections.  相似文献   

16.
Chowfin A  Tight R 《Mycopathologia》1999,145(3):121-126
Nine fungal strains of Dichotomomyces cejpii were studied for their ability to produce antibiotic metabolites. It was found that they produced secondary exo- and endo metabolites with antimicrobial activity against Gram-negative and Gram-positive bacteria, yeasts and moulds and with a toxic effect against animal organs in vitro. Detailed chemical characterization of these active principles need to be carried out. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The potential role in plant defence of the two wheat pathogenesis-related proteins of class 4 Wheatwin1 and Wheatwin2, possessing high in vitro antimicrobial activity against several pathogens, was investigated through over-expression of their encoding genes wPR4a and wPR4b in transgenic tobacco plants. Several independent transformants were obtained, expressing high levels of either transgene when analysed by northern and western blotting. Accumulation of the wPR4b-encoded protein Wheatwin2 in the apoplast of transgenic plants was also demonstrated. When homozygous transgenic lines in the T4 generation were tested for increased tolerance to Phytophthora nicotianae, they were found to be significantly more resistant than both the wild type and their isogenic, non-wPR4 transgenic lines. These results suggest that both Wheatwins might have in vivo antimicrobial activity, confirming earlier indications from in vitro assays.  相似文献   

18.
This paper presents the results of a study on chemical composition and antimicrobial activity of Thymus pannonicus All. (Lamiaceae) essential oil from Vojvodina province (north of Serbia). The investigated oil was hydrodistilled from a flowering plant and analysed by GC and GC-MS. Fifty-three constituents were identified (>97% of total oil), with geranial (41.42%, w/w) and neral (29.61%, w/w) as the most prominent. The antimicrobial activity of the oil was evaluated using agar disc diffusion and broth microdilution method against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, two strains of Klebsiella pneumoniae and two strains of Candida albicans. The essential oil exhibited antimicrobial activity to varying degrees against all tested strains. The maximum activity of T. Pannonicus oil was observed against E. coli, S. aureus and both tested strains of C. Albicans (MIC = 50 μ/ml, each). Moderate activity was observed against P. aeruginosa and one of the tested strains of K. Pneumoniae (MIC = 200 μ/ml), while E. faecalis and the other strain of K. Pneumoniae expressed a higher degree of resistance (MIC > 200 μ/ml). This study confirms that essential oil of T. pannonicus possesses remarkable in vitro antimicrobial activity against several medicinally important pathogens. This is attributable to lemon-scented citral, a mixture of geranial and neral, which has well-documented antimicrobial activity against a range of bacteria and fungi.  相似文献   

19.
Peptides modelled on the tryptophan rich domain of puroindolines and the related grain softness protein-1 have a broad range of antibacterial and antifungal activities. With the aims of further investigating the activities of these antimicrobial peptides we studied their activity against wheat rust diseases and environmental stability. PINA-based peptides were found to have high pH and thermal stability in addition to being stable over long periods at room temperature. These properties could make them excellent candidates as preservatives in food. PuroA, Pina-R39G and PuroB peptides adversely affected the morphology of the stripe rust spores (Puccinia striiformis f. sp. tritici), while PuroA and PuroB showed moderate inhibition of their germination. Additionally, GSP-5D reduced the germination of leaf rust spores (P. triticina). PuroA and PuroB sprayed onto stripe rust infected plants effected a moderate reduction in the number of stripe rust uredinia on wheat seedlings, as did PuroB sprayed onto the seedlings and allowed to coat the leaves for 5 day prior to spore infection. The results suggest that the presence of the PIN-based peptides may lower frequency of initial infection foci.  相似文献   

20.
Nisin A is the most thoroughly investigated member of the lantibiotic family of antimicrobial peptides. In addition to a long history of safe use as a food antimicrobial, its activity against multi-drug resistant pathogens has resulted in a renewed interest in applying nisin as a chemotherapeutic to treat bacterial infections. The wealth of Nisin-related information that has been generated has also led to the development of the biotechnological capacity to engineer novel Nisin variants with a view to improving the function and physicochemical properties of this already potent peptide. However, the identification of bioengineered Nisin derivatives with enhanced antimicrobial activity against Gram-positive targets is a recent event. In this study, we created stable producers of the most promising derivatives of Nisin A generated to date [M21V (hereafter Nisin V) and K22T (hereafter Nisin T)] and assessed their potency against a range of drug-resistant clinical, veterinary and food pathogens. Nisin T exhibited increased activity against all veterinary isolates, including streptococci and staphylococci, and against a number of multi-drug resistant clinical isolates including MRSA, but not vancomycin-resistant enterococci. In contrast, Nisin V displayed increased potency against all targets tested including hVISA strains and the hyper-virulent Clostridium difficile ribotype 027 and against important food pathogens such as Listeria monocytogenes and Bacillus cereus. Significantly, this enhanced activity was validated in a model food system against L. monocytogenes. We conclude that Nisin V possesses significant potential as a novel preservative or chemotherapeutic compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号