首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research in the mechanics of soft tissue, and lung tissue in particular, has emphasized that dissipative processes depend predominantly on the viscous stress. A corollary is that dissipative losses may be expressed as a tissue viscous resistance, (Rti). An alternative approach is offered by the structural damping hypothesis, which holds that dissipative processes within soft tissue depend directly more on the elastic stress than on the viscous stress. This implies that dissipative and elastic processes within lung tissues are coupled at a fundamental level. We induced alterations of Rti by exposing canines to aerosols of the constrictors prostaglandin F2 alpha, histamine, and methacholine and by changing volume history. Using the structural damping paradigm, we could separate those alterations in Rti into the product of two distinct contributions: change in the coefficient of coupling of dissipation to elastance (eta) and change in the elastance itself (Edyn). Response of Edyn accounted for most of the response of resistance associated with contractile stimulation; it accounted for almost all the response associated with differences in volume history. The eta changed appreciably with constriction but accounted for little of the response of Rti with volume history. According to the structural damping hypothesis, induced changes in eta with constriction must reflect changes in the kinetics of the stress-bearing process, i.e., differences in cross-bridge kinetics within the target contractile cell and/or differences in the influence of the target cell on other stress-bearing systems. We conclude that, regardless of underlying processes, the structural damping analysis demonstrates a fundamental phenomenological simplification: when Edyn responds, Rti is obligated to respond to a similar degree.  相似文献   

2.
To determine the sensitivity of pulmonary resistance (RL) to changes in breathing frequency and tidal volume, we measured RL in intact anesthetized dogs over a range of breathing frequencies and tidal volumes centering around those encountered during quiet breathing. To investigate mechanisms responsible for changes in RL, the relative contribution of airway resistance (Raw) and tissue resistance (Rti) to RL at similar breathing frequencies and tidal volumes was studied in six excised, exsanguinated canine left lungs. Lung volume was sinusoidally varied, with tidal volumes of 10, 20, and 40% of vital capacity. Pressures were measured at three alveolar sites (PA) with alveolar capsules and at the airway opening (Pao). Measurements were made during oscillation at five frequencies between 5 and 45 min-1 at each tidal volume. Resistances were calculated by assuming a linear equation of motion and submitting lung volume, flow, Pao, and PA to a multiple linear regression. RL decreased with increasing frequency and decreased with increasing tidal volume in both isolated and intact lungs. In isolated lungs, Rti decreased with increasing frequency but was independent of tidal volume. Raw was independent of frequency but decreased with tidal volume. The contribution of Rti to RL ranged from 93 +/- 4% (SD) with low frequency and large tidal volume to 41 +/- 24% at high frequency and small tidal volume. We conclude that the RL is highly dependent on breathing frequency and less dependent on tidal volume during conditions similar to quiet breathing and that these findings are explained by changes in the relative contributions of Raw and Rti to RL.  相似文献   

3.
Alveolar surface tension (gamma)-lung volume relationships were obtained for quasi-static and dynamic lung pressure-volume (PV) histories from measurements of PV curves of liquid- and air-filled excised rabbit lungs. PV relationships were measured at room temperature in lungs filled with test liquids with constant liquid-liquid interfacial tensions with alveolar surface-active materials; and air-filled lungs before and after the normal alveolar surface film was covered with test liquids with constant values of liquid- and air-liquid interfacial tensions. Interfacial tensions of test liquids were measured in a surface balance on monolayers of dipalmitoyl phosphatidylcholine. Values of gamma for the normal air-filled lung were obtained either from points of intersection between PV curves with the normal and test liquid interface or from a general relationship between gamma and the component of recoil pressure due to surface tension derived from the data. In contrast to previous analyses that have used PV measurements, this approach does not depend on assumptions about lung microstructural geometry. Surface tension-volume relationships for the normal air-filled lung show a prominent hysteresis with surface tension ranging from near 0 at low volumes during lung deflation to transiently high values near 40 dyn/cm during inflation; value of equilibrium surface tension (gamma EQ) near 28 dyn/cm; and characteristic transitions in surface film compressibility and associated transitions in film kinetic behavior in nonequilibrium film states where gamma deviates from gamma EQ. These features are consistent with the behavior predicted from current models of alveolar surface film behavior.  相似文献   

4.
A nonlinear viscoelastic model of lung tissue mechanics.   总被引:3,自引:0,他引:3  
There have been a number of attempts recently to use linear models to describe the low-frequency (0-2 Hz) dependence of lung tissue resistance (Rti) and elastance (Eti). Only a few attempts, however, have been made to account for the volume dependence of these quantities, all of which require the tissues to be plastoelastic. In this paper we specifically avoid invoking plastoelasticity and develop a nonlinear viscoelastic model that is also capable of accounting for the nonlinear and frequency-dependent features of lung tissue mechanics. The model parameters were identified by fitting the model to data obtained in a previous study from dogs during sinusoidal ventilation. The model was then used to simulate pressure and flow data by use of various types of ventilation patterns similar to those that have been employed experimentally. Rti and Eti were estimated from the simulated data by use of four different estimation techniques commonly applied in respiratory mechanics studies. We found that the estimated volume dependence of Rti and Eti is sensitive to both the ventilation pattern and the estimation technique, being in error by as much as 217 and 22%, respectively.  相似文献   

5.
We have recently shown in dogs that much of the increase in lung resistance (RL) after induced constriction can be attributed to increases in tissue resistance, the pressure drop in phase with flow across the lung tissues (Rti). Rti is dependent on lung volume (VL) even after induced constriction. As maximal responses in RL to constrictor agonists can also be affected by changes in VL, we questioned whether changes in the plateau response with VL could be attributed in part to changes in the resistive properties of lung tissues. We studied the effect of changes in VL on RL, Rti, airway resistance (Raw), and lung elastance (EL) during maximal methacholine (MCh)-induced constriction in 8 anesthetized, paralyzed, open-chest mongrel dogs. We measured tracheal flow and pressure (Ptr) and alveolar pressure (PA), the latter using alveolar capsules, during tidal ventilation [positive end-expiratory pressure (PEEP) = 5.0 cmH2O, tidal volume = 15 ml/kg, frequency = 0.3 Hz]. Measurements were recorded at baseline and after the aerosolization of increasing concentrations of MCh until a clear plateau response had been achieved. VL was then altered by changing PEEP to 2.5, 7.5, and 10 cmH2O. RL changed only when PEEP was altered from 5 to 10 cmH2O (P < 0.01). EL changed when PEEP was changed from 5 to 7.5 and 5 to 10 cmH2O (P < 0.05). Rti and Raw varied significantly with all three maneuvers (P < 0.05). Our data demonstrate that the effects of VL on the plateau response reflect a complex combination of changes in tissue resistance, airway caliber, and lung recoil.  相似文献   

6.
Studies of the anesthetic effects on the airway often use pulmonary resistance (RL) as an index of airway caliber. To determine the effects of the volatile anesthetic, halothane, on tissue and airway components of RL, we measured both components in excised canine lungs before and during halothane administration. Tissue resistance (Rti), airway resistance (Raw), and dynamic lung compliance (CL, dyn) were determined at constant tidal volume and at ventilatory frequencies ranging from 5 to 45 min-1 by an alveolar capsule technique. Halothane decreased RL at each breathing frequency by causing significant decreases in both Raw and Rti but did not change the relative contribution of Rti to RL at any frequency. Halothane increased CL,dyn at each breathing frequency, although there was little change in the static pressure-volume relationship. The administration of isoproterenol both airway and tissue components of RL; it may act by relaxing the contractile elements in the lung. Both components must be considered when the effects of volatile anesthetics on RL are interpreted.  相似文献   

7.
The bulk modulus and the shear modulus describe the capacity of material to resist a change in volume and a change of shape, respectively. The values of these elastic coefficients for air-filled lung parenchyma suggest that there is a qualitative difference between the mechanisms by which the parenchyma resists expansion and shear deformation; the bulk modulus changes roughly exponentially with the transpulmonary pressure, whereas the shear modulus is nearly a constant fraction of the transpulmonary pressure for a wide range of volumes. The bulk modulus is approximately 6.5 times as large as the shear modulus. In recent microstructural modeling of lung parenchyma, these mechanisms have been pictured as being similar to the mechanisms by which an open cell liquid foam resists deformations. In this paper, we report values for the bulk moduli and the shear moduli of normal air-filled rabbit lungs and of air-filled lungs in which alveolar surface tension is maintained constant at 16 dyn/cm. Elevating surface tension above normal physiological values causes the bulk modulus to decrease and the shear modulus to increase. Furthermore, the bulk modulus is found to be sensitive to a dependence of surface tension on surface area, but the shear modulus is not. These results agree qualitatively with the predictions of the model, but there are quantitative differences between the data and the model.  相似文献   

8.
We hypothesized that when the lung makes the transition from the fluid- to the air-filled state at birth, there are changes in physical and functional properties of the alveolar surfactant. To test this hypothesis, newborn rabbits were killed at different times in the first 24 h of life, their lungs lavaged with ice-cold saline, and the lavage fluid subfractionated by differential centrifugation. The phospholipid and protein content and composition and the kinetics of surface tension lowering of the subfractions were examined. We found that with the onset of breathing, shifts occur in the distribution of surfactant subfractions as a surfactant apoprotein-free phospholipid fraction is generated. The ratio of rapidly sedimentable apoprotein-rich to slowly sedimentable, apoprotein-free fractions decreases from 31 at birth to 4 at 24 h of life. Concurrently, rates of surface tension lowering by the subfractions increase with time. The results suggest that the adult pattern of pool sizes and surface activity of alveolar surfactant is not present at birth but evolves slowly over the 1st day of life.  相似文献   

9.
The influence of inspiratory and expiratory flow magnitude, lung volume, and lung volume history on respiratory system properties was studied by measuring transfer impedances (4-30 Hz) in seven normal subjects during various constant flow maneuvers. The measured impedances were analyzed with a six-coefficient model including airway resistance (Raw) and inertance (Iaw), tissue resistance (Rti), inertance (Iti), and compliance (Cti), and alveolar gas compressibility. Increasing respiratory flow from 0.1 to 0.4 1/s was found to increase inspiratory and expiratory Raw by 63% and 32%, respectively, and to decrease Iaw, but did not change tissue properties. Raw, Iti, and Cti were larger and Rti was lower during expiration than during inspiration. Decreasing lung volume from 70 to 30% of vital capacity increased Raw by 80%. Cti was larger at functional residual capacity than at the volume extremes. Preceding the measurement by a full expiration rather than by a full inspiration increased Iaw by 15%. The data suggest that the determinants of Raw and Iaw are not identical, that airway hysteresis is larger than lung hysteresis, and that respiratory muscle activity influences tissue properties.  相似文献   

10.
Lung mechanics and airway responsiveness to methacholine (MCh) were studied in seven volunteers before and after a 20-min intravenous infusion of saline. Data were compared with those of a time point-matched control study. The following parameters were measured: 1-s forced expiratory volume, forced vital capacity, flows at 40% of control forced vital capacity on maximal (Vm(40)) and partial (Vp(40)) forced expiratory maneuvers, lung volumes, lung elastic recoil, lung resistance (Rl), dynamic elastance (Edyn), and within-breath resistance of respiratory system (Rrs). Rl and Edyn were measured during tidal breathing before and for 2 min after a deep inhalation and also at different lung volumes above and below functional residual capacity. Rrs was measured at functional residual capacity and at total lung capacity. Before MCh, saline infusion caused significant decrements of forced expiratory volume in 1 s, Vm(40), and Vp(40), but insignificantly affected lung volumes, elastic recoil, Rl, Edyn, and Rrs at any lung volume. Furthermore, saline infusion was associated with an increased response to MCh, which was not associated with significant changes in the ratio of Vm(40) to Vp(40). In conclusion, mild airflow obstruction and enhanced airway responsiveness were observed after saline, but this was not apparently due to altered elastic properties of the lung or inability of the airways to dilate with deep inhalation. It is speculated that it was likely the result of airway wall edema encroaching on the bronchial lumen.  相似文献   

11.
A possible role of the pleura in lung mechanics   总被引:1,自引:0,他引:1  
The pressure-volume behavior of excised visceral pleura is studied. The pleura is modeled as a thin incompressible membrane, and the requisite membrane tension is determined from a pseudostrain-energy function. Results are compared to pressure-volume behavior of saline-filled and air-filled parenchyma and to experimental pleural data from the literature. Results suggest that the pleura may play a role as a volume limiter of lung expansion although the need for more detailed analysis is discussed.  相似文献   

12.
We partitioned pulmonary resistance (RL) in excised normal, senile, and emphysematous human lungs at various distending pressures; peripheral resistance (Rp) was measured by means of retrograde catheters and lung tissue resistance (Rti) by means of pleural capsules. By subtracting Rp from RL and Rti from Rp, we obtained, respectively, central (Rcaw) and peripheral (Rpaw) airway resistance. We determined also lung volumes, the elastic recoil pressure-volume curve, and the forced expiratory volume in 1 s-to-vital capacity ratio (FEV1/VC). The functional data were related to morphometry: mean linear intercept (Lm), diameter (d), and density (n/cm2) of membranous bronchioles. In the three groups of lungs, Rti demonstrates a marked negative frequency dependence and increases with transplumonary pressure. In emphysematous lungs, the increase of RL is mainly due to an increase of Rpaw; in addition, Rcaw and Rti are higher than normal. In the group of senile lungs, airway resistances are within normal range, but Rti is slightly increased. FEV1/VC is related to Rpaw and elastic recoil pressure; Rpaw is related to d and n/cm2, and Rti is related to dynamic elastance and to Lm.  相似文献   

13.
Mechanics of edematous lungs.   总被引:5,自引:0,他引:5  
Using the parenchymal marker technique, we measured pressure (P)-volume (P-V) curves of regions with volumes of approximately 1 cm3 in the dependent caudal lobes of oleic acid-injured dog lungs, during a very slow inflation from P = 0 to P = 30 cmH2O. The regional P-V curves are strongly sigmoidal. Regional volume, as a fraction of volume at total lung capacity, remains constant at 0.4-0.5 for airway P values from 0 to approximately 20 cmH2O and then increases rapidly, but continuously, to 1 at P = approximately 25 cmH2O. A model of parenchymal mechanics was modified to include the effects of elevated surface tension and fluid in the alveolar spaces. P-V curves calculated from the model are similar to the measured P-V curves. At lower lung volumes, P increases rapidly with lung volume as the air-fluid interface penetrates the mouth of the alveolus. At a value of P = approximately 20 cmH2O, the air-fluid interface is inside the alveolus and the lung is compliant, like an air-filled lung with constant surface tension. We conclude that the properties of the P-V curve of edematous lungs, particularly the knee in the P-V curve, are the result of the mechanics of parenchyma with constant surface tension and partially fluid-filled alveoli, not the result of abrupt opening of airways or atelectatic parenchyma.  相似文献   

14.
Pressure-volume measurements and the punch indentation test are used to obtain the bulk modulus (kappa) and the shear modulus (mu) of lung parenchyma of air- and liquid-filled rabbit lungs. Plots of kappa and mu vs. transpulmonary pressure obtained from these measurements indicate that there is very little difference between the elastic behavior of the air- and liquid-filled lung, suggesting that the mechanism of resisting deformation in both cases is similar. On the other hand, from plots of kappa and mu vs. lung volume, it appears that the elastic moduli are higher in the air-filled lung than in the liquid-filled lung at the same volume. These differences, referred to as kappa gamma and mu gamma, as well as the difference in transpulmonary pressures (P gamma), are presumably due to the additional elastic recoil of the air-filled lung provided by alveolar surface tension (gamma). No conclusion could be reached about the shape of the kappa gamma vs. P gamma curve. However, the mu gamma vs. P gamma relationship appears to be approximately linear, with a slope of approximately 0.5. This result agrees qualitatively with the model (T. A. Wilson and H. Bachofen, J. Appl. Physiol. 52: 1064-1070, 1982) in which the part of the parenchyma that provides P gamma is pictured as mechanically analogous to an open cell liquid foam, having mu gamma = 0.4P gamma (J. Appl. Mech. Trans. ASME 51: 229-231, 1984), but it is statistically significant only at high lung volumes.  相似文献   

15.
By means of backscattered light from a pointlike source on the pleural surface, we investigated the dynamic behavior of the surface-to-volume ratio (S/V) in excised dog lobes subjected to small volume steps both in and out on both the inflation and deflation limb of standard pressure-volume maneuvers. The technique utilizes the established correlation of the pattern of backscattered light with morphometric mean linear intercept and is suitable for dynamic studies. We hypothesized that 1) there would be a difference in the timing of stress relaxation or recovery between alveolar septa and the fibromuscular tissue in the alveolar duct that would reveal itself as a temporally changing S/V after a step-volume change and 2) that geometric hysteresis (looping of S/V with volume), as seen with large volume excursion histories, would be similarly present in small tidal volume loops. Our experimental results contradicted both hypotheses. In particular, we found virtually no change in S/V after a step-volume change, even in the presence of substantial stress adaptation. In addition, when geometric hysteresis of small loops was present, it was always in the sense opposite to the geometric hysteresis of large loops. We conclude that 1) there is a functional "matching" of the stress-adaptive timing between alveolar septa and ductal mouths and 2) during small volume looping, the stress hysteresis (looping of stress with volume) in the ductal tissue may be larger than that of the septa, including surface tension.  相似文献   

16.
Alveolar recruitment is a central strategy in the ventilation of patients with acute lung injury and other lung diseases associated with alveolar collapse and atelectasis. However, biomechanical insights into the opening and collapse of individual alveoli are still limited. A better understanding of alveolar recruitment and the interaction between alveoli in intact and injured lungs is of crucial relevance for the evaluation of the potential efficacy of ventilation strategies. We simulated human alveolar biomechanics in normal and injured lungs. We used a basic simulation model for the biomechanical behavior of virtual single alveoli to compute parameterized pressure–volume curves. Based on these curves, we analyzed the interaction and stability in a system composed of two alveoli. We introduced different values for surface tension and tissue properties to simulate different forms of lung injury. The data obtained predict that alveoli with identical properties can coexist with both different volumes and with equal volumes depending on the pressure. Alveoli in injured lungs with increased surface tension will collapse at normal breathing pressures. However, recruitment maneuvers and positive endexpiratory pressure can stabilize those alveoli, but coexisting unaffected alveoli might be overdistended. In injured alveoli with reduced compliance collapse is less likely, alveoli are expected to remain open, but with a smaller volume. Expanding them to normal size would overdistend coexisting unaffected alveoli. The present simulation model yields novel insights into the interaction between alveoli and may thus increase our understanding of the prospects of recruitment maneuvers in different forms of lung injury.  相似文献   

17.
The effect of bronchoconstriction on airway resistance is known to be spatially heterogeneous and dependent on tidal volume. We present a model of a single terminal airway that explains these features. The model describes a feedback between flow and airway resistance mediated by parenchymal interdependence and the mechanics of activated smooth muscle. The pressure-tidal volume relationship for a constricted terminal airway is computed and shown to be sigmoidal. Constricted terminal airways are predicted to have two stable states: one effectively open and one nearly closed. We argue that the heterogeneity of whole lung constriction is a consequence of this behavior. Airways are partitioned between the two states to accommodate total flow, and changes in tidal volume and end-expiratory pressure affect the number of airways in each state. Quantitative predictions for whole lung resistance and elastance agree with data from previously published studies on lung impedance.  相似文献   

18.
Surfactant occurs in cyclically inflating and deflating, gas-holding structures of vertebrates to reduce the surface tension of the inner fluid lining, thereby preventing collapse and decreasing the work of inflation. Here we determined the presence of surfactant in material lavaged from the airspace in the gas mantle of the pulmonate snail Helix aspersa. Surfactant is characterized by the presence of disaturated phospholipid (DSP), especially disaturated phosphatidylcholine (PC), lavaged from the airspace, by the presence of lamellated osmiophilic bodies (LBs) in the airspaces and epithelial tissue, and by the ability of the lavage to reduce surface tension of fluid in a surface balance. Lavage had a DSP/phospholipid (PL) ratio of 0.085, compared to 0.011 in membranes, with the major PL being PC (45.3%). Cholesterol, the primary fluidizer for pulmonary surfactant, was similar in lavage and in lipids extracted from cell homogenates (cholesterol/PL: 0.04 and 0. 03, respectively). LBs were found in the tissues and airspaces. The surface activity of the lavage material is defined as the ability to reduce surface tension under compression to values much lower than that of water. In addition, surface-active lipids will vary surface tension, increasing it upon inspiration as the surface area expands. By these criteria, the surface activity of lavaged material was poor and most similar to that shown by pulmonary lavage of fish and toads. Snail surfactant displays structures, a biochemical PL profile, and biophysical properties similar to surfactant obtained from primitive fish, teleost swim bladders, the lung of the Dipnoan Neoceratodus forsteri, and the amphibian Bufo marinus. However, the cholesterol/PL and cholesterol/DSP ratios are more similar to the amphibian B. marinus than to the fish, and this similarity may indicate a crucial physicochemical relationship for these lipids.  相似文献   

19.
The role of endogenous nitric oxide (NO) in modulating the excitatory response of distal airways to vagal stimulation is unknown. In decerebrate, ventilated, open-chest piglets aged 3-10 days, lung resistance (RL) was partitioned into tissue resistance (Rti) and airway resistance (Raw) by using alveolar capsules. Changes in RL, Rti, and Raw were evaluated during vagal stimulation at increasing frequency before and after NO synthase blockade with N(omega)-nitro-L-arginine methyl ester (L-NAME). Vagal stimulation increased RL by elevating both Rti and Raw. NO synthase blockade significantly increased baseline Rti, but not Raw, and significantly augmented the effects of vagal stimulation on both Rti and Raw. Vagal stimulation also resulted in a significant increase in cGMP levels in lung tissue before, but not after, L-NAME infusion. In seven additional piglets after RL was elevated by histamine infusion in the presence of cholinergic blockade with atropine, vagal stimulation failed to elicit any change in RL, Rti, or Raw. Therefore, endogenous NO not only plays a role in modulating baseline Rti, but it opposes the excitatory cholinergic effects on both the tissue and airway components of RL. We speculate that activation of the NO/cGMP pathway during cholinergic stimulation plays an important role in modulating peripheral as well as central contractile elements in the developing lung.  相似文献   

20.
In this study we have investigated how changes in respiratory frequency and tidal volume in anesthetized dogs affect the fall in dynamic compliance (Cdyn) that occurs with time after a hyperinflation. Results showed that increasing frequency [at controlled arterial (PaCO2)] PCO2 from 16 to 32 breaths/min had no effect on either the rate of fall or the magnitude of the fall up to 1 h after the hyperinflation. However, increasing the tidal volume from 300 to 750 ml abolished the fall in Cdyn from 10 to 50 min after the hyperinflation; the fall within the first 10 min remained unchanged. We also examined the effect of a simulated "hyperinflation" on the compliance of strips of parenchymal tissue in vitro. This result indicated that in the absence of surface forces, parenchymal tissue demonstrates a fall in compliance, which is complete within 10 min. Overall our findings are consistent with the hypothesis that the fall in Cdyn after hyperinflation is a two-phase process. The initial rapid fall in Cdyn (i.e., within 10 min) may simply represent a passive recovery process from the hyperinflation stress on the parenchymal tissue. The slower fall occurring after 10 min likely results from progressive increases in surface tension, and this increase can apparently be blocked by increases in tidal volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号