首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Abstract: Chronic exposure of embryonic brain to opioids leads to microcephaly and developmental abnormalities. An immortalized mouse neuroblastoma × dorsal root ganglion hybrid cell line stably transfected to overexpress κ-opioid receptors (F-11κ7) showed complete loss of κ-receptor binding to [3H]U69,593 after exposure to the κ-agonist U69,593 for 24 h. U69,593 had no measurable effect on cell viability as determined by either cell viability or DNA fragmentation assays. However, when cell death (apoptosis) was induced by either staurosporine or the phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002, cells pretreated with U69,593 for 24 h showed increased apoptosis compared with untreated cells. Thus, staurosporine (50 n M ), wortmannin (4 µ M ), and LY294002 (30 µ M ) treatment for 24 h induced a 50% loss of cell viability and DNA fragmentation in 24 h. U69,593 pretreatment produced the same killing at lower concentrations, namely, 20 n M staurosporine, 2 µ M wortmannin, and 14 µ M LY294002, respectively. The effects of U69,593 were time-, dose-, and naloxone-reversible, suggesting that they are receptor-mediated. However, coaddition of U69,593 at the same time as staurosporine, wortmannin, or LY294002 did not enhance apoptosis. All three drugs that induced apoptosis were found to increase the level of ceramide, and pretreatment with U69,593 further increased the rate of formation of ceramide, a lipid that induces apoptosis in cells. We propose that chronic exposure to κ-receptor agonists promotes increased vulnerability of neurons to apoptosis.  相似文献   

2.
Apoptosis was induced in embryonic chick cardiomyocytes by staurosporine. Treatment of cardiomyocytes with the preferential caspase-2 inhibitor, z-VDVAD-fmk (100 microM), produced a significant (P < 0.05) although small reduction in the amount of cell death. Ac-DVED-cmk (100 microM), which preferentially inhibits caspase-3 but inhibits to a lesser extent caspase-6, -7, -8, and -10, produced a minimal decrease in cell death. The combination of the caspase-3 and -2 inhibitors produced an additive reduction in cell death after staurosporine (1 microM for 6 h) from 80.4 +/- 0.7 to 54.6 +/- 1.3%. The ability of staurosporine to activate caspase-3 was confirmed in these cardiomyocytes by measurement of caspase-3 activity. A role for ceramide formation, from sphingomyelin to induce caspase activation was unlikely, as there were no changes in cellular ceramide or sphingomyelin after staurosporine treatment of cardiomyocytes when sphingomyelin was labeled by [(3)H]palmitate for 24 h. Neither were there any changes in sphingomyelinase activity. While staurosporine effectively suppressed PKC activity, phorbol 12-myristate 13 acetate did not alter staurosporine-induced cell death or DNA fragmentation. These results demonstrate that, in this model of cardiac cell death, caspase-2 inhibition is of considerable importance, caspase-3 inhibition is of lesser significance but may produce additional effects in the combination with caspase-2 inhibition, and ceramide production from sphingomyelin is not operative in the pathway leading to caspase activation and cell death.  相似文献   

3.
Ceramide has been typically thought of as the membrane anchor for the carbohydrate in glycosphingolipids but many studies have suggested that it may cause apoptosis. Apoptosis or programmed cell death (PCD) is thought to be responsible for the death of one-half of neurons surviving the development of the nervous system. The potential involvement of the sphingomyelin-ceramide signaling process as an integral part of PCD was therefore examined in several neurotumour cell lines. We show that synthetic C2-ceramide (N-acetylsphingosine), a soluble ceramide analogue, can rapidly trigger PCD in these cells, characterized by: 1) classic DNA laddering on agarose gels; 2) DNA fragmentation as determined by Hoechst Dye; and 3) cell viability (mitochondrial function and intact nuclei) assays. We report that staurosporine can both activate PCD (by all three criteria above) in neurotumour cells and increase both the formation of ceramide and ceramide mass. Both ceramide formation and the induction of PCD were further enhanced by the co-addition of a ceramidase inhibitor oleoylethanolamine (25 µM). Staurosporine and oleoylethanolamine were similarly effective in inducing ceramide formation and PCD in immortalized hippocampal neurons (HN-2) and immortalized dorsal root ganglion cells (F-11). Our data suggests that formation of ceramide is a key event in the induction of PCD in neuronally derived neurotumour cells.Abbreviations PCD programmed cell death - PKC protein kinase C - HPTLC high-performance thin-layer chromatography - DETAPAC diethylenetriaminepentaacetic acid - DMEM Dubelco's modified Eagle's medium - FCS fetal calf serum - PBS phosphate-buffered saline - DAG diacylglycerol - DDI distilled-deionized - Cer ceramide - SM sphingomyelin Dedicated to Dr Sen-itiroh Hakomori in celebration of his 65th birthday.  相似文献   

4.
The sphingomyelin metabolites ceramide and sphingosine are mediators of cell death induced by gamma-irradiation. We studied the production of ceramide and the effects of exogenous ceramide on apoptosis in LNCaP prostate cancer cells that are highly resistant to gamma-irradiation-induced cell death. LNCaP cells can be sensitized to gamma-irradiation by tumor necrosis factor alpha (TNF-alpha) and, to a lesser degree, by the agonistic FAS antibody CH-11. TNF-alpha activated intrinsic and extrinsic apoptosis pathways and increased ceramide and sphingosine levels in irradiated LNCaP cells. CH-11 activated only the extrinsic apoptosis pathways and had a negligible effect on ceramide and sphingosine levels in irradiated LNCaP cells. Exogenous ceramide and bacterial sphingomyelinase sensitized LNCaP cells to radiation-induced apoptosis and had a synergistic effect on cell death after irradiation with TNF-alpha, but not with CH-11. Cell death effects after exposure to ceramide and irradiation were blocked by the serine protease inhibitor TLCK (Na-p-tosyl-L-lysine-chloromethylketone), but not by the caspase inhibitor z-VAD (2-val-Ala-Asp(oMe)-CH(2)F). During LNCaP cell apoptosis induced by exogenous ceramide, we observed activation of caspase-9, but not caspases-8, -3, or -7. The effect of ceramide occurred largely via the intrinsic mitochondrial apoptosis pathway and enhanced TNF-alpha, but not CH-11 effects on irradiated cells. The data show that ceramide enhanced activation of the intrinsic apoptotic pathway and enhanced cell death induced by TNF-alpha with or without gamma-irradiation. TNF-alpha and gamma-irradiation elevated levels of endogenous ceramide and activated the intrinsic cell death pathway.  相似文献   

5.
Abstract: We have investigated the mechanisms of cell death induced by long-term exposure to the glutamate receptor agonist ( S )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate [( S )-AMPA]. Using primary cultures of pure neurons (95%) grown in serum-free conditions, we found that 24-h exposure to ( S )-AMPA (0.01–1,000 µ M ) induced concentration-dependent neuronal cell death (EC50 = 3 ± 0.5 µ M ) with cellular changes including neurite blebbing, chromatin condensation, and DNA fragmentation, indicative of apoptosis. ( S )-AMPA induced a delayed cell death with DNA fragmentation occurring in ∼50% of cells at concentrations between 100 and 300 µ M detected using terminal transferase-mediated dUTP nick end-labeling (TUNEL) and agarose gel electrophoresis. Apoptotic chromatin condensation was detected using 4,6-diamidino-2-phenylindole, a fluorescent DNA binding dye. Cell death induced by ( S )-AMPA was attenuated by the AMPA receptor-selective antagonist LY293558 (10 µ M ) and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ), yielding EC50 values of 73 ± 5 and 265 ± 8 µ M , respectively, and was unaffected by the NMDA receptor antagonist MK-801 (10 µ M ). The number of apoptotic nuclei induced by 300 µ M ( S )-AMPA (57%) was also reduced substantially by the antagonists LY293558 and CNQX, with only 20% and 18% of neurons, respectively, staining TUNEL-positive at 24 h. In addition, cycloheximide (0.5 µg/ml) also inhibited ( S )-AMPA-induced DNA fragmentation and cell death. Our results show that long-term exposure to AMPA can induce substantial neuronal death involving apoptosis in cultured cortical neurons, suggesting a wide involvement of AMPA-sensitive glutamate receptors in excitotoxic injury and neurodegenerative pathologies.  相似文献   

6.
CrmA Protects Against Apoptosis and Ceramide Formation in PC12 Cells   总被引:8,自引:0,他引:8  
TNF- activated caspase 8 and caspase 3 in PC12 cells, leading to cell death by apoptosis (DNA fragmentation). TNF- caspase activation and cell killing were blocked by transfection and overexpression of the viral protein CrmA, which specifically inhibits caspase 8. CrmA was also able to block the TNF--induced increase in ceramide formation in PC12 cells. Conversely, if caspase 8 was activated by light-activated Rose Bengal, there was an increase in both ceramide and caspase 3–mediated apoptosis, which was blocked by CrmA overexpression. This suggested that caspase 8 increases ceramide either by increasing its synthesis or by activating sphingomyelinase. Since fumonisin B1 did not block and sphingomyelin decreased when ceramide increased, we concluded that activation of sphingomyelinase is the most likely mechanism. The Rose Bengal activation of caspase 8 and increased ceramide formation was blocked with IETD-CHO, to show that reactive oxygen species (also generated by Rose Bengal) were not responsible for the observed increase in ceramide. Thus in PC12 pheochromocytoma cells, ceramide appears to amplify the death signal and there appears to be a sequence of events: TNF; TRADD, pro-caspase 8, caspase 8, sphingomyelinase, ceramide, caspase 3, apoptosis.  相似文献   

7.
Larocca  J. N.  Farooq  M.  Norton  W. T. 《Neurochemical research》1997,22(4):529-534
Tumor necrosis factor- induces oligodendrocytes apoptosis, and is known to stimulate the hydrolysis of sphingomyelin to form the lipid mediator, ceramide. These data encouraged us to determine whether ceramide itself is able to induce apoptosis in oligodendrocytes. For this purpose the cell-permeable ceramide analog, C2-ceramide was used. Treatment of bovine oligodendrocyte cell cultures with this compound induced cell death in a time- and concentration-dependent manner. The induction of cell death was specifically associated with the action of C2-ceramide and could not be elicited by dioctanoylglycerol (DC8) or phorbol 12-myristate 13-acetate (PMA). Treatment of the cultures with neutral sphingomyelinase, which increased the hydrolyses of endogenous sphingomyelin, resulted in oligodendrocyte death, whereas exposure of the cells to phospholipase C and A2 did not. C2-ceramide treatment caused DNA fragmentation. Morphologic analysis of the cells showed that C2-ceramide treatment resulted in a loss of their processes, reduction of cell volume, chromatin condensation, and formation of apoptotic bodies. These results indicate that ceramide can induce oligodendrocyte apoptosis, and suggest that sphingolipid metabolism plays a key role in the regulation of this process.  相似文献   

8.
Kim JH  Yoon YD  Shin I  Han JS 《IUBMB life》1999,48(4):445-452
Although recent studies have demonstrated that ovarian follicular atresia occurs by apoptosis of granulosa cells, the intracellular signaling pathways involved in apoptotic cell death are still poorly characterized. We examined the role of ceramide as a candidate intracellular mediator of Fas-mediated signaling in cultured granulosa cells. Expression of Fas antigen was demonstrated by Western blot of granulosa cell lysates and immunostaining of cultured granulosa cells. Exposure of granulosa cells to anti-Fas monoclonal antibody (anti-Fas mAb) resulted in significant sphingomyelin hydrolysis, which was accompanied by a progressive increase in endogenous levels of ceramide. The addition of exogenous C6-ceramide induced drastic morphological change, including nuclear fragmentation and typical apoptotic DNA degradation. Furthermore, both anti-Fas mAb and C6-ceramide decreased phospholipase D (PLD) activity and diacylglycerol (DAG) concentrations in a time- or a dose-dependent manner. In addition, treatment with phorbol 12-myristate 13-acetate completely attenuated the ceramide-induced inhibition of PLD activity and partially suppressed ceramide-induced apoptosis. These results indicate that the Fas/ceramide signaling pathway might play a role in granulosa cell apoptosis and suggest that the PLD/DAG pathway might be cross-linked to the Fas/ceramide pathway in apoptotic processes of granulosa cells.  相似文献   

9.
B-cells, triggered via their surface B-cell receptor (BcR), start an apoptotic program known as activation-induced cell death (AICD), and it is widely believed that this phenomenon plays a role in the restriction and focusing of the immune response. Although both ceramide and caspases have been proposed to be involved in AICD, the contribution of either and the exact molecular events through which AICD commences are still unknown. Here we show that in Ramos B-cells, BcR-triggered cell death is associated with an early rise of C16 ceramide that derives from activation of the de novo pathway, as demonstrated using a specific inhibitor of ceramide synthase, fumonisin B1 (FB1), and using pulse labeling with the metabolic sphingolipid precursor, palmitate. There was no evidence for activation of sphingomyelinases or hydrolysis of sphingomyelin. Importantly, FB1 inhibited several specific apoptotic hallmarks such as poly(A)DP-ribose polymerase cleavage and DNA fragmentation. Electron microscopy revealed morphological evidence of mitochondrial damage, suggesting the involvement of mitochondria in BcR-triggered apoptosis, and this was inhibited by FB1. Moreover, a loss of mitochondrial membrane potential was observed in Ramos cells after BcR cross-linking, which was inhibited by the addition of FB1. Interestingly, benzyloxycarbonyl-Val-Ala-dl-Asp, a broad spectrum caspase inhibitor did not inhibit BcR-induced mitochondrial membrane permeability transition but did block DNA fragmentation. These results suggest a crucial role for de novo generated C16 ceramide in the execution of AICD, and they further suggest an ordered and more specific sequence of biochemical events in which de novo generated C16 ceramide is involved in mitochondrial damage resulting in a downstream activation of caspases and apoptosis.  相似文献   

10.
The sphingomyelin pathway has been implicated in mediating the effect of several extracellular agents leading to important biochemical and cellular changes. The aim of this investigation is to study interleukin-1β (IL-1β) signaling in oligodendrocytes. For this purpose, the CG4 oligodendrocyte cells were differentiated and incubated with IL-1β. This treatment induced a time- and dose-dependent increase of the endocellular ceramide. To mimic the effect of the elevation of endogenous ceramide, the CG4 cells were treated with the ceramide analogue C2-ceramide. Cell survival, measured with the MTT assay, showed that, by increasing the concentration of ceramide, up to 40% of CG4 cells were dying within 6 h, similar data were obtained with the primary differentiated oligodendrocytes. Condensation of chromatin, nuclear fragmentation, and formation of apoptotic bodies indicated that apoptosis was the cause of death. Surprisingly, long-term exposure (72 h) to increasing concentrations of IL-1β, which increases intracellular ceramide, did not induce oligodendroglial cell death. These results show that an increase of intracellular ceramide is not sufficient to induce apoptosis in oligodendrocytes and that IL-1β signaling through the ceramide pathway in these cells can mediate functions other than programmed cell death. J. Cell Biochem. 66:532–541, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Abstract: We reported previously that stereoisomers of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), the d - threo and l - threo forms, exerted inhibitory and stimulatory effects on glycosphingolipid (GSL) biosynthesis in B16 melanoma cells, respectively. In the present study, the primary cultured rat neocortical explants were treated with l - or d - threo -PDMP. These isomers exhibited opposite effects on neurite outgrowth: d -PDMP was inhibitory at concentrations ranging from 5 to 20 µ M , whereas l -PDMP was stimulatory over the same concentration range, and the maximal effect was observed at 10–15 µ M . Rat neocortical explants were doubly labeled with [14C]serine and [3H]galactose at 15 µ M l - or d -PDMP. l -PDMP increased the incorporations of both labels into sphinganine, sphingosine, ceramide, sphingomyelin, neutral GSLs, and gangliosides, whereas d -PDMP inhibited the glucosylation of ceramide resulting in a reduction of ganglioside biosynthesis and accumulation of precursors of glucosylceramide, ceramide, and sphingomyelin. To clarify the stimulatory effect of l -PDMP on GSL biosynthesis, serine palmitoyltransferase, sphingosine N -acyltransferase, glucosylceramide synthase, lactosylceramide synthase, GM3 synthase, and GD3 synthase were quantified in cell lysates of explants pretreated with this agent. Serine palmitoyltransferase was fully activated up to 150% of the control. Furthermore, marked increases in the activities of lactosylceramide synthase (200%), GM3 synthase (240%), and GD3 synthase (300%) were observed. These results suggest that the neurotrophic action of l -PDMP may be ascribable to its stimulatory effect on the biosynthesis of GSLs, especially that of gangliosides.  相似文献   

12.
Activation of apoptosis contributes to cardiomyocyte dysfunction and death in diabetic cardiomyopathy. The peptide glucagon-like peptide-1 (GLP-1), a hormone that is the basis of emerging therapy for type 2 diabetic patients, has cytoprotective actions in different cellular models. We investigated whether GLP-1 inhibits apoptosis in HL-1 cardiomyocytes stimulated with staurosporine, palmitate, and ceramide. Studies were performed in HL-1 cardiomyocytes. Apoptosis was induced by incubating HL-1 cells with staurosporine (175 nM), palmitate (135 μM), or ceramide (15 μM) for 24 h. In staurosporine-stimulated HL-1 cardiomyocytes, phosphatidylserine exposure, Bax-to-Bcl-2 ratio, Bad phosphorylation (Ser(136)), BNIP3 expression, mitochondrial membrane depolarization, cytochrome c release, caspase-3 activation, DNA fragmentation, and mammalian target of rapamycin (mTOR)/p70S6K phosphorylation (Ser(2448) and Thr(389), respectively) were assessed. Apoptotic hallmarks were also measured in the absence or presence of low (5 mM) and high (10 mM) concentrations of glucose. In addition, phosphatidylserine exposure and DNA fragmentation were analyzed in palmitate- and ceramide-stimulated cells. Staurosporine increased apoptosis in HL-1 cardiomyocytes. GLP-1 (100 nM) partially inhibited staurosporine-induced mitochondrial membrane depolarization and completely blocked the rest of the staurosporine-induced apoptotic changes. This cytoprotective effect was mainly mediated by phosphatidylinositol 3-kinase (PI3K) and partially dependent on ERK1/2. Increasing concentrations of glucose did not influence GLP-1-induced protection against staurosporine. Furthermore, GLP-1 inhibited palmitate- and ceramide-induced phosphatidylserine exposure and DNA fragmentation. Incretin GLP-1 protects HL-1 cardiomyocytes against activation of apoptosis. This cytoprotective ability is mediated mainly by the PI3K pathway and partially by the ERK1/2 pathway and seems to be glucose independent. It is proposed that therapies based on GLP-1 may contribute to prevent cardiomyocyte apoptosis.  相似文献   

13.
This study examines the role of sphingolipids in mediating the apoptosis of PC12W cells induced by the angiotensin II type 2 (AT2) receptor. PC12W cells express abundant AT2 receptor but not angiotensin II type 1 receptor and undergo apoptosis when stimulated by angiotensin II. AT2 receptor-induced ceramide accumulation preceded the onset of caspase 3 activation and DNA fragmentation. AT2 receptor-induced ceramide accumulation did not result from the degradation of complex sphingolipids (SL) such as sphingomyelin or glycosphingolipids, as no changes in neutral or acidic sphingomyelinase activities, sphingomyelin level, nor in cellular glycolipid composition were observed. AT2 receptor activated serine palmitoyltransferase with a maximum time of 24 h after angiotensin II stimulation. The AT2 receptor-induced accumulation of ceramide was blocked by inhibitors of the de novo pathway of SL synthesis, beta-chloro-L-alanine and fumonisin B1. Inhibition of the de novo biosynthesis of SLs by fumonisin B1 and beta-chloro-L-alanine completely abrogated the AT2 receptor-mediated apoptosis. Pertussis toxin and orthovanadate blocked AT2 receptor-mediated ceramide production. Taken together our data demonstrate that in PC12W cells the stimulation of AT2 receptor induces the activation of de novo pathway, and a metabolite of this pathway, possibly ceramide, mediates AT2 receptor-induced apoptosis.  相似文献   

14.
Abstract: Staurosporine (0.03–0.5 µ M ) induced a dose-dependent, apoptotic degeneration in cultured rat hippocampal neurons that was sensitive to 24-h pretreatments with the protein synthesis inhibitor cycloheximide (1 µ M ) or the cell cycle inhibitor mimosine (100 µ M ). To investigate the role of Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis, we overexpressed calbindin D28K, a Ca2+ binding protein, and Cu/Zn superoxide dismutase, an antioxidative enzyme, in the hippocampal neurons using adenovirus-mediated gene transfer. Infection of the cultures with the recombinant adenoviruses (100 multiplicity of infection) resulted in a stable expression of the respective proteins assessed 48 h later. Overexpression of both calbindin D28K and Cu/Zn superoxide dismutase significantly reduced staurosporine neurotoxicity compared with control cultures infected with a β-galactosidase overexpressing adenovirus. Staurosporine-induced neuronal apoptosis was also significantly reduced when the culture medium was supplemented with 10 or 30 m M K+, suggesting that Ca2+ influx via voltage-sensitive Ca2+ channels reduces this apoptotic cell death. In contrast, neither the glutamate receptor agonist NMDA (1–10 µ M ) nor the NMDA receptor antagonist dizocilpine (MK-801; 1 µ M ) was able to reduce staurosporine neurotoxicity. Cultures treated with the antioxidants U-74500A (1–10 µ M ) and N -acetylcysteine (100 µ M ) also demonstrated reduced staurosporine neurotoxicity. These results suggest a fundamental role for both Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis.  相似文献   

15.
The nature of the signaling pathway(s) which initiate drug-triggered apoptosis remains largely unknown and is of fundamental importance in understanding cell death induced by chemotherapeutic agents. Here we show that in the leukemic cell lines U937 and HL-60, daunorubicin, at concentrations which trigger apoptosis, stimulated two distinct cycles of sphingomyelin hydrolysis (approximately 20% decrease at 1 microM) within 4-10 min and 60-75 min with concomitant ceramide generation. We demonstrate that the increase in ceramide levels, which precedes apoptosis, is mediated by a neutral sphingomyelinase and not by ceramide synthase. Indeed, potent ceramide synthase inhibitors such as fumonisin B1 did not affect daunorubicin-triggered sphingomyelin hydrolysis, ceramide generation or apoptosis. In conclusion, we provide evidence that daunorubicin-triggered apoptosis is mediated by a signaling pathway which is initiated by an early sphingomyelin-derived ceramide production.  相似文献   

16.
Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation.  相似文献   

17.
18.
Abstract: We show here that 2'-deoxyadenosine (2'-dAdo) but not adenosine was toxic to chromaffin cells of 3–4-week-old rat adrenal glands. More than 75% of the cells plated in culture gradually died over a 3-day period in the presence of 100 µ M 2'-dAdo plus 3 µ M deoxycoformycin (DCF). Morphological observations together with bisbenzimide staining and terminal deoxynucleotidyl transferase-mediated nick end labeling showed membrane blebbing, shrinkage of cell bodies, chromatin condensation, and DNA fragmentation, suggesting apoptosis-like cell death by 2'-dAdo. Lethal effects of 2'-dAdo were potentiated by DCF, a drug that inhibits adenosine deaminase. 2'-dAdo-prompted cell death was not prevented by inhibitors of nucleoside transporter (3 µ M dilazep or 1 µ M nitrobenzylthioinosine), precursors of pyrimidine nucleotide biosynthesis (300 µ M uridine or 100 µ M 2'-deoxycytidine), or 5 m M nicotinamide. Cells incubated with 2'-dAdo (100 and 300 µ M ) showed a three- and ninefold, respectively, increase in content of dATP, a product known to be an inhibitor of ribonucleotide reductase, an enzyme essential for DNA synthesis. Formation of dATP was completely prevented by iodotubercidin (ITu), a drug that inhibits phosphorylation of 2'-dAdo to dATP by nucleoside kinase. It is interesting that nanomolar concentrations of ITu also completely protected chromaffin cells from 2'-dAdo lethality. Our study demonstrates for the first time that mammalian adrenal chromaffin cells undergo apoptotic cell death by a natural nucleoside and suggests that this model could be used to study apoptosis and cell function.  相似文献   

19.
Increased extracellular Ca(2+) ([Ca(2+)](o)) can damage tissues, but the molecular mechanisms by which this occurs are poorly defined. Using HEK 293 cell lines that stably overexpress the Ca(2+)-sensing receptor (CaR), a G protein-coupled receptor, we demonstrate that activation of the CaR leads to apoptosis, which was determined by nuclear condensation, DNA fragmentation, caspase-3 activation, and increased cytosolic cytochrome c. This CaR-induced apoptotic pathway is initiated by CaR-induced accumulation of ceramide which plays an important role in inducing cell death signals by distinct G protein-independent signaling pathways. Pretreatment of wild-type CaR-expressing cells with pertussis toxin inhibited CaR-induced [(3)H]ceramide formation, c-Jun phosphorylation, and caspase-3 activation. The ceramide accumulation, c-Jun phosphorylation, and caspase-3 activation by the CaR can be abolished by sphingomyelinase and ceramide synthase inhibitors in different time frames. Cells that express a nonfunctional mutant CaR that were exposed to the same levels of [Ca(2+)](o) showed no evidence of activation of the apoptotic pathway. In conclusion, we report the involvement of the CaR in stimulating programmed cell death via a pathway involving GTP binding protein alpha subunit (Galpha(i))-dependent ceramide accumulation, activation of stress-activated protein kinase/c-Jun N-terminal kinase, c-Jun phosphorylation, caspase-3 activation, and DNA cleavage.  相似文献   

20.
Besides the well-documented effect of the chemotherapeutic drug doxorubicin on free radical generation, the exact signaling mechanisms by which it causes cardiac damage remain largely unknown and are of fundamental importance in understanding anthracycline cardiotoxicity. In this study, we describe that a 1 h treatment of isolated adult rat cardiac myocytes with doxorubicin (0.5 microM) induced DNA fragmentation associated with the classical morphological features of apoptosis observed after 7 days of culture. The doxorubicin toxicity was preceded by an increase in intracellular ceramide levels with a concurrent decrease in sphingomyelin. Anthracycline-induced ceramide accumulation resulted from the activation of a sphingomyelinase assayed under acidic conditions, an effect related to an increase in V(max). Pretreatment of cardiac myocytes with L-carnitine (200 microgram/ml), a compound known for its protective effect on cardiac metabolic injuries, was found to dose-dependently inhibit the doxorubicin-induced sphingomyelin hydrolysis and ceramide generation as well as subsequent cell death. However, L-carnitine did not protect cardiac myocytes from apoptosis induced by exogenous cell-permeant ceramide. L-carnitine pretreatment did not affect the sphingomyelinase basal activity but abolished the doxorubicin-induced increase in V(max). Moreover, in vitro studies conducted on cell extracts or with purified acid sphingomyelinase demonstrated that L-carnitine exerted a dose-dependent, sphingomyelinase inhibitory effect (through V(max) reduction). Taken together, these findings show that by inhibiting a (perhaps novel) drug-activated acid sphingomyelinase and ceramide generation, L-carnitine can prevent doxorubicin-induced apoptosis of cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号