首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The net inflow of nitrate can be calculated from the nitrate concentration at the root surface by means of the Michaelis-Menten equation. Because of maximum inflow (Imax) is not constant but varies with plant age and growing conditions, a model for calculating Imax during plant growth was derived. Lettuce was grown in nutrient solution. Variations in temperature, radiation and plant age were used to vary growth rates and N-demand of plants. There was a linear relationship between relative growth rates (RGR) and maximum nitrate inflow (Imax), that could be described by the following regression function: Imax = 0.24 + 6.57 RGR. A residual analysis showed a further influence on Imax from the root:shoot-ratio (RSR), the effects of which could be accounted for by including an e-function in the relationship: Imax = (0.27 + 10.63 RGR) e(–0.0017 RSR). This model for calculating Imax was validated in two further experiments.  相似文献   

2.
Phytoplankton size-selective competition for fluctuating nutrients was studied with the use of a numerical model, which describes nitrate and ammonium uptake, nitrate reduction to ammonium, and growth as a function of cell she under fluctuating nitrogen limitation. The only size-dependent parameter in the model was the cell nutrient quota. Related to this, the cell surface area per biomass was negatively correlated to cell volume, and the vacuole volume per biomass ratio was positively correlated to cell volume. Simulations showed an inverse correlation between the maximum specific growth rate and cell size under steady-state conditions. With nitrate as the limiting nitrogen source, nitrogen quotas were always higher than with ammonium at the same specific growth rate. Net passive transport of ammonium due to unspecific diffusion of ammonia across the plasma membrane decreased the affinity for ammonium, whereas the affinity for nitrate was not influenced. Transient state-specific ammonium uptake was not dependent on cell size. However, small algae always have the highest specific growth rate in ammonium-controlled systems according to our model. Transient state nitrate uptake rate was positively correlated to cell size because larger algae have a higher vacuole volume per biomass, in which nitrate can be stored. Despite their lower maximum growth rate, larger algae became dominant during simulations under fluctuating nitrate supply when amplitude of and the period between nitrate pulses were high enough. Results from model simulations were qualitatively validated by earlier observations that large diatoms become dominant under fluctuating conditions when nitrate is the main nitrogen source.  相似文献   

3.
Previous work has shown that stomata of growth chamber-grown Vicia faba leaves have an enhanced CO2 response when compared with stomata of greenhouse-grown plants. This guard cell response to CO2 acclimatizes to the environmental conditions on the transfer of plants between the two environments. In the present study, air relative humidity is identified as a key environmental factor mediating the changes in stomatal sensitivity to CO2. In the greenhouse environment, elevation of relative humidity to growth chamber levels resulted in an enhanced CO2 response, whereas a reduction in the light level to that comparable to growth chamber conditions had no effect on stomatal CO2 sensitivity. The transfer of plants between humidified and normal greenhouse conditions resulted in an acclimation response with a time-course matching that previously obtained in transfers of plants between greenhouse and growth chamber environments. The high stomatal sensitivity to CO2 of growth chamber-grown plants could be reduced by lowering growth chamber relative humidity and then restored with its characteristic acclimation time-course by an elevation of relative humidity. Leaf temperature was unchanged during this restoration, eliminating it as a primary factor in the acclimation response. Humidity regulation of stomatal CO2 sensitivity could function as a signal for leaves inside dense foliage canopies, promoting stomatal opening under low light, low CO2 conditions.  相似文献   

4.
Abstract. Glycine max (L.) Merr. was grown under several light conditions to determine the role of red and far-red radiation in plant adaptation to vegetation shade. Neutral density,‘neutral’ density with elevated far-red radiation, and green shade treatments were used in a greenhouse, producing calculated phytochrome photostationary state (Pfr/Pr+Pfr) values of 0.68, 0.63 and 0.51, respectively. Cool-white fluorescent lamps either alone or in conjunction with far-red fluorescent lamps were used in a growth chamber, providing Pfr/Pr+Pfr of 0.79 and 0.61, respectively. Daily photo-synthetically active radiation was about 25% of daylight and was approximately equal for both greenhouse (2.15MJ m?2) and growth chamber (2.57MJ m?2). Developmental stage 4 weeks after sowing was similar for all treatments, but axillary growth and rates of leaf area and dry matter accretion differed between plants from greenhouse and growth chamber. Light conditions simulating vegetation shade (i.e. a low ratio of red to far-red radiation) significantly promoted petiole elongation and retarded the rate of stem elongation in both greenhouse and growth chamber experiments. Other aspects of growth either were not significantly altered by spectral quality or were not modified consistently in both greenhouse and growth chamber environments. Net photosynthetic rates measured under growth conditions for unifoliate and first trifoliolate (TF1) leaves of growth chamber plants between 9 and 21 d after sowing were generally unaffected by spectral quality, but supplemental FR enhanced TF1 leaf area expansion. The latter effect was not correlated with increased dry matter accumulation. The significance of spectral quality for adaptation of soybeans to canopy closure and intercropping is discussed.  相似文献   

5.
The biochemical basis for variations in the critical nitrogen‐to‐phosphorus (N:P) ratio, which defines the transition between N‐ and P‐limitation of growth rate, is currently not well understood. To assess this issue, we cultured the cryptophyte Rhinomonas reticulata NOVARINO in chemostats with inflow nitrate‐to‐phosphate ratios ranging from 5 to 60 mol N·(mol P)?1 at two light intensities. The nitrate‐to‐phosphate ratio marking the transition between N‐ and P‐limitation was independent of light intensity and was between 30 and 45 mol N/mol P. In N‐limited cells, the particulate N:P ratio was stable at around 23 mol N/mol P over a range of inflow nitrate‐to‐phosphate from 5 to 30, whereas in P‐limited cells this ratio was around 90 mol N/mol P at inflow nitrate‐to‐phosphate ratios of 45 and 60. Cell phosphorus decreased with increasing nitrate‐to‐phosphate ratio up to the critical nitrate‐to‐phosphate ratio for each light intensity, above which they remained stable. The C:P of R. reticulata cells increased with increasing inflow nitrate‐to‐phosphate from around the Redfield value (106 mol C/mol P) to around 700. There was a significant effect of light on C:P in the N‐ limited cells, with higher C:P under high light conditions that was not observed in the P‐limited chemostats. Cellular RNA was not influenced by light but was greatly influenced by the type of nutrient limitation. In contrast, chl a, C, N, and protein were not influenced by the nitrate‐to‐phosphate in the inflow medium. Total protein per RNA was independent of light intensity but exhibited a maximum at inflow nitrate‐to‐phosphate of 30. Our results suggest a strong “two‐level” homeostatic mechanism of cellular N and P content in R. reticulata with two distinct states that are determined by the type of nutrient limitation and not by light.  相似文献   

6.
7.
The objective of this study was to determine if plant roots have to take up nitrate at their maximum rate for achieving maximum yield. This was investigated in a flowing-solution system which kept nutrient concentrations at constant levels. Nitrate concentrations were maintained in the range 20 to 1000 μM. Maximum uptake rate for both species was obtained at 100 μM. Concentrations below 100 μM resulted in decreases in uptake rate per cm root (inflow) for both spinach and kohlrabi by 1/3 and 2/3, respectively. However, only with kohlrabi this caused a reduction in N uptake and yield. Thus indicating that this crop has to take up nitrate at the maximum inflow. Spinach, however, compensated for lower inflows by enhancing its root absorbing surface with more and longer roots hairs. Both species increased their root length by 1/3 at low nitrate concentrations.  相似文献   

8.
Nitrate is an important nitrogen source used by plants. Despite of the considerable variation in the amount of soil nitrate, plants keep cytosolic nitrate at a homeostatic controlled level. Here we describe a set of homeostatic controller motifs and their interaction that can maintain robust cytosolic nitrate homeostasis at fluctuating external nitrate concentrations and nitrate assimilation levels. The controller motifs are divided into two functional classes termed as inflow and outflow controllers. In the presence of high amounts of environmental nitrate, the function of outflow controllers is associated to efflux mechanisms removing excess of nitrate from the cytosol that is taken up by low-affinity transporter systems (LATS). Inflow controllers on the other hand maintain homeostasis in the presence of a high demand of nitrate by the cell relative to the amount of available environmental nitrate. This is achieved by either remobilizing nitrate from a vacuolar store, or by taking up nitrate by means of high-affinity transporter systems (HATS). By combining inflow and outflow controllers we demonstrate how nitrate uptake, assimilation, storage and efflux are integrated to a regulatory network that maintains cytosolic nitrate homeostasis at changing environmental conditions.  相似文献   

9.
Stomata in epidermal strips from growth chamber-grown Vicia faba leaves opened less in response to white light than did stomata from greenhouse-grown leaves. Chlorophyll-mediated, red light-stimulated opening was similar in stomata from the two growth conditions, but stomata from the growth chamber environment had a severely reduced response to blue light. Transfer of plants between the two growth conditions resulted in an acclimation of the stomatal blue light response. Stomata lost blue light sensitivity within 1 d of transfer to growth chamber conditions and gained sensitivity to blue light over an 8 d period after transfer to a greenhouse. Short-term transfer experiments confirmed that the rapid loss of blue light sensitivity was an acclimation response, requiring between 12 and 20 h exposure to growth chamber conditions. The acclimation of the stomatal response to blue light was inversely related to a previously reported acclimation response in which stomata change between high CO2 sensitivity under growth chamber conditions and low CO2 sensitivity under greenhouse conditions. The time courses of the blue light and CO2 acclimation responses were virtually identical, suggesting the possibility of a common acclimation mechanism.  相似文献   

10.
Assessment of yield performance under fluctuating environmental conditions is a major aim of crop breeders. Unfortunately, results from controlled‐environment evaluations of complex agronomic traits rarely translate to field performance. A major cause is that crops grown over their complete lifecycle in a greenhouse or growth chamber are generally constricted in their root growth, which influences their response to important abiotic constraints like water or nutrient availability. To overcome this poor transferability, we established a plant growth system comprising large refuse containers (120 L ‘wheelie bins’) that allow detailed phenotyping of small field‐crop populations under semi‐controlled growth conditions. Diverse winter oilseed rape cultivars were grown at field densities throughout the crop lifecycle, in different experiments over 2 years, to compare seed yields from individual containers to plot yields from multi‐environment field trials. We found that we were able to predict yields in the field with high accuracy from container‐grown plants. The container system proved suitable for detailed studies of stress response physiology and performance in pre‐breeding populations. Investment in automated large‐container systems may help breeders improve field transferability of greenhouse experiments, enabling screening of pre‐breeding materials for abiotic stress response traits with a positive influence on yield.  相似文献   

11.
Reed AJ  Hageman RH 《Plant physiology》1980,66(6):1184-1189
Two maize hybrids were grown under growth chamber conditions on solution or vermiculite medium that contained 2.5, 7.5, or 15 millimolar nitrate. The objectives were to determine: (a) the effect of nitrate supply on N metabolism and growth and (b) the interrelationship between nitrate uptake, flux, and reduction on the accumulation of reduced N and nitrate by the various plant parts and for the whole plant.  相似文献   

12.
Spore discharge in Entomophthora grylli   总被引:1,自引:0,他引:1  
Entomophthora grylli Fres. has been found on larvae of Bradysia (Sciaridae, Diptera) on wood in Kansas State University greenhouses since November 1967. Infected larvae crawled to an exposed site in the night and by morning spores of E. grylli were being discharged. In the greenhouse and under controlled environments spore discharge showed a marked periodicity; spore discharge occurred in the light with peaks in the first 1–4 h; discharge then gradually declined but extended into the dark. On the second and third days peaks occurred in the light but were progressively smaller. In a greenhouse under fluctuating conditions twin peaks occurred at 10·00 and 22·00; in a growth chamber, at constant 21° C. 90% r.h., alternating 12 h light and dark periods, spore discharge was similar, with maximum numbers about 21/2 h after the onset of the photo-period. In continuous dark and continuous light no endogenous pattern was evident. Temperature range for spore discharge was 2–28·, with optimum at 15·. Decreasing humidities resulted in decreased spore production and cessation of discharge below 40% r.h.  相似文献   

13.
Robinson  David 《Plant and Soil》2001,232(1-2):41-50
The responses of roots to nitrogen- and phosphorus-rich patches of soil include proliferation of laterals and stimulation of nutrient inflow (uptake rate per unit root length) within the patch. Nitrate uptake from an N-rich patch is thereby maximised and, perhaps, compensates for an uneven supply of nitrate to the whole root system. Paradoxically, the often weak correlation between root length density and N uptake found in experiments on single plants and crop monocultures suggests that root proliferation in patches has only a minor compensatory influence on N capture. This paradox was resolved when it was realised that localised root proliferation during inter-specific competition for nitrate can lead to a strong association between root length density and nitrate capture. Here, a simple model of inter-specific competition is used to estimate the stimulation in inflow required in one plant to match the N capture of a competitor that responds only by root proliferation, and to estimate associated carbon costs. The model predicts that nitrate inflow must increase proportionally more than root length density to achieve the same N capture. For example, the N capture possible with a 10% increase in root length density can be matched by increasing N inflow by anything from 20% to 20-fold, depending on the initial conditions: the faster the rate of change in root length density, the greater the required relative increase in inflow. In those terms, proliferation would seem the better option, but one that may be more costly in terms of its carbon requirement.  相似文献   

14.
Leaf growth and Anthesis-Silking Interval (ASI) are the main determinants of source and sink strengths of maize via their relations with light interception and yield, respectively. They depend on the abilities of leaves and silks to expand under fluctuating environmental conditions, so the possibility is raised that they may have a partly common genetic determinism. This possibility was tested in a mapping population which segregates for ASI. Maximum leaf elongation rate per unit thermal time (parameter a) and the slopes of its responses to evaporative demand and soil water status (parameters b and c) were measured in greenhouse and growth chamber experiments, in two series of 120 recombinant inbred lines (RILs) studied in 2004 and 2005 with 33 RILs in common both years. ASI was measured in three and five fields under well-watered conditions and water deficit, respectively. For each RIL, the maximum elongation rate per unit thermal time was reproducible over several experiments in well-watered plants. It was accounted for by five QTLs, among which three co-localized with QTLs of ASI of well-watered plants. The alleles conferring high leaf elongation rate conferred a low ASI (high silk elongation rate). The responses of leaf elongation rate to evaporative demand and to predawn leaf water potential were linear, allowing each RIL to be characterized by the slopes of these response curves. These slopes had three QTLs in common with ASI of plants under water deficit. The allele for leaf growth maintenance was, in all cases, that for shorter ASI (maintained silk elongation rate). By contrast, other regions influencing ASI had no influence on leaf growth. These results may have profound consequences for modelling the genotype x environment interaction and for designing drought-tolerant ideotypes.  相似文献   

15.
The potential use of a layered double hydroxide (LDH) to act as a nitrate buffer system in soil in order to reduce the movement of nitrate was investigated. Long-term plant and soil experiments were carried out under greenhouse conditions with the following objectives: (i) evaluate the nitrate adsorption capacity of the LDH during crop growth, and its influence on N uptake, (ii) study the ability of the LDH to adsorb nitrate mineralized during fallow periods, and its influence on nitrate leaching, (iii) evaluate the reversibility for nitrate exchange of the LDH under cultivation conditions, and (iv) determine the nitrate buffer capacity of the soil after LDH application. The LDH adsorbed nitrate from the soil solution during the growth period without affecting plant N uptake. As a result of the adsorption of nitrate on the LDH, the nitrate-N concentration in the soil solution at harvest was reduced by a factor of ten compared to a soil without LDH. The LDH efficiently adsorbed nitrate that was mineralized in the soil during periods without cultivation, reduced nitrate-N leaching losses by about 80%, and kept this nitrate available for a following crop. The nitrate buffer capacity of the soil after 15months increased from 0.3 (without LDH) to 2.7 with the application of 10g LDH kg?1 soil. It is concluded that the LDH has a potential to be used as a long-term nitrate exchanger to control the movement of nitrate in soil, and thereby reduce risks of nitrate leaching in crop production in sensible areas.  相似文献   

16.
Autohydrogenotrophic batch growth of Ralstonia eutropha H16 was studied in a stirred-tank reactor with nitrate and nitrite as terminal electron acceptors and the sole limiting substrates. Assuming product inhibition by nitrite, saturation kinetics with the two limiting substrates and a simple switching function, which allows growth on nitrite only at low nitrate concentrations, resulted in a kinetic growth model with nine model parameters. The data of two batch experiments were used to identify the kinetic model. The kinetic model was validated with two additional batch experiments. The model predictions are in very good agreement with the experimental data. The maximum nitrite concentration was estimated to be 30.7 mM (total inhibition of growth). After complete reduction of nitrate, the growth rate decreases almost to zero before it increases again because of the following nitrite respiration. The maximum autohydrogenotrophic growth rate of Ralstonia eutropha with nitrate as a final electron acceptor (0.509 d−1) was found to be reduced by 90–95% compared to the so far reported autohydrogenotrophic growth rates with oxygen.  相似文献   

17.
Dramatic differences in the height of lima beans (Phaseolus lunatus L.) treated with two different Rhizobium strains were studied. Lima beans were grown in Perlite in the greenhouse or in a minus-N culture solution in the growth chamber. The plants were inoculated with either Rhizobium sp. (lima bean) strain 127E15, which contains the constitutive nitrate reductase activity, or strain 127E14, which lacks that activity. For up to 3 weeks, no growth differences were observed in the plants inoculated with either strain. Five weeks after inoculation, however, those plants inoculated with strain 127E14 were significantly taller and had a larger number of leaves than those inoculated with strain 127E15. The difference in plant height was the result of increased internode elongation caused by inoculation with Rhizobium sp. 127E14. This response was observed with all lima bean cultivars tested, including Henderson, Fordhook, Allgreen, and Early Thorogreen. The growth difference occurred in plants cultured in the greenhouse or in the growth chamber.  相似文献   

18.
19.
Chlorella pyrenoidosa was grown in a continuous-flow chemostat under nitrogen-limited conditions. The population density tended to oscillate very significantly. Net specific growth rate was only approximately a hyperbolic function of nitrate concentration in the chemostat. The best estimate of the half-saturation constant for nitrate is 6 mug of nitrogen per liter and it is unlikely that the value is greater than 14 mug per liter or 1 mum nitrate.The dry weight production of cells per unit of nitrogen taken up is a linearly decreasing function of the net specific growth rate with a maximum of 27.1 mg per mg N and a minimum of about 9 mg per mg N. Thus there is considerable storage of nitrogen at high growth rates. Both the dark respiration rate and the rate of photosynthesis at light saturation increase with increasing net specific growth rate.  相似文献   

20.
Routing nitrate through backwaters of regulated floodplain rivers to increase retention could decrease loading to nitrogen (N)-sensitive coastal regions. Sediment core determinations of N flux were combined with inflow–outflow fluxes to develop mass balance approximations of N uptake and transformations in a flow-controlled backwater of the Upper Mississippi River (USA). Inflow was the dominant nitrate source (>95%) versus nitrification and varied as a function of source water concentration since flow was constant. Nitrate uptake length increased linearly, while uptake velocity decreased linearly, with increasing inflow concentration to 2 mg l−1, indicating limitation of N uptake by loading. N saturation at higher inflow concentration coincided with maximum uptake capacity, 40% uptake efficiency, and an uptake length 2 times greater than the length of the backwater. Nitrate diffusion and denitrification in sediment accounted for 27% of the backwater nitrate retention, indicating that assimilation by other biota or denitrification on other substrates were the dominant uptake mechanisms. Ammonium export from the backwater was driven by diffusive efflux from the sediment. Ammonium increased from near zero at the inflow to a maximum mid-lake, then declined slightly toward the outflow due to uptake during transport. Ammonium export was small compared to nitrate retention. Handling editor: J. Padisak  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号