首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background:  Helicobacter pylori infection is different between children and adults, not only in infection rate but also in virulence genotypes. However, the 3' region of CagA, important in stomach carcinogenesis, still remains unclear in children. The present study aims to compare the frequency of cagA and the distribution of its subtypes between children and adults in South China.
Materials and Methods:  One hundred and twenty-eight children and 99 adults with peptic symptoms were enrolled in our research. Histology, rapid urease test, and real-time polymerase chain reaction (PCR) assay were used to diagnose H. pylori infection. vacA s1 was detected by real-time PCR, and EPIYA motifs in the 3' region of CagA by conventional PCR and DNA sequencing.
Results:  H. pylori infection was diagnosed in 53 children and 62 adults. vacA s1 was identified in 90.6% and 91.9% of infected children and adults, respectively. Furthermore, cagA was identified in 73.6% and 82.3% of infected children and adults, respectively. No patient with multiple cagA subtypes was observed. A higher prevalence of more virulent cagA genotype was found in children compared to adults ( p <  .05). Thirty-eight of 39 (97.4%) cagA -positive children were found to have EPIYA-ABD and only one (2.6%) with EPIYA-ABC. In adults, four types of EPIYA motifs – ABC (29.4%), ABD (64.7%), ABAB (2%), and AAD (3.9%) – were identified, and the ABD type was found more commonly in severe diseases, such as atrophic gastritis (53.3%) and gastric cancer (71.4%).
Conclusion:  cagA genotypes in children and in adults are different, and EPIYA-ABD may have potential clinical implication in the development of gastric cancer in South China.  相似文献   

2.
Helicobacter pylori infection is one of the most common infections worldwide and is associated with gastric diseases. Virulence factors such as VacA and CagA have been shown to increase the risk of these diseases. Studies have suggested a causal role of CagA EPIYA-C in gastric carcinogenesis and this factor has been shown to be geographically diverse. We investigated the number of CagA EPIYA motifs and the vacA i genotypes in H. pylori strains from asymptomatic children. We included samples from 40 infected children (18 females and 22 males), extracted DNA directly from the gastric mucus/juice (obtained using the string procedure) and analysed the DNA using polymerase chain reaction and DNA sequencing. The vacA i1 genotype was present in 30 (75%) samples, the i2 allele was present in nine (22.5%) samples and both alleles were present in one (2.5%) sample. The cagA-positive samples showed distinct patterns in the 3’ variable region of cagA and 18 of the 30 (60%) strains contained 1 EPIYA-C motif, whereas 12 (40%) strains contained two EPIYA-C motifs. We confirmed that the studied population was colonised early by the most virulent H. pylori strains, as demonstrated by the high frequency of the vacA i1 allele and the high number of EPIYA-C motifs. Therefore, asymptomatic children from an urban community in Fortaleza in northeastern Brazil are frequently colonised with the most virulent H. pylori strains.  相似文献   

3.
Helicobacter pylori cagA-positive strains are associated with gastric adenocarcinoma. The cagA gene product CagA is delivered into gastric epithelial cells where it localizes to the plasma membrane and undergoes tyrosine phosphorylation at the EPIYA-repeat region, which contains the EPIYA-A segment, EPIYA-B segment, and Western CagA-specific EPIYA-C or East Asian CagA-specific EPIYA-D segment. In host cells, CagA specifically binds to and deregulates SHP-2 phosphatase via the tyrosine-phosphorylated EPIYA-C or EPIYA-D segment, thereby inducing an elongated cell shape known as the hummingbird phenotype. In this study, we found that CagA multimerizes in cells in a manner independent of its tyrosine phosphorylation. Using a series of CagA mutants, we identified a conserved amino acid sequence motif (FPLXRXXXVXDLSKVG), which mediates CagA multimerization, within the EPIYA-C segment as well as in a sequence that located immediately downstream of the EPIYA-C or EPIYA-D segment. We also found that a phosphorylation-resistant CagA, which multimerizes but cannot bind SHP-2, inhibits the wild-type CagA-SHP-2 complex formation and abolishes induction of the hummingbird phenotype. Thus, SHP-2 binds to a preformed and tyrosinephosphorylated CagA multimer via its two Src homology 2 domains. These results, in turn, indicate that CagA multimerization is a prerequisite for CagA-SHP-2 interaction and subsequent deregulation of SHP-2. The present work raises the possibility that inhibition of CagA multimerization abolishes pathophysiological activities of CagA that promote gastric carcinogenesis.  相似文献   

4.
Helicobacter pylori contributes to the development of peptic ulcers and atrophic gastritis. Furthermore, H. pylori strains carrying the cagA gene are more virulent than cagA-negative strains and are associated with the development of gastric adenocarcinoma. The cagA gene product, CagA, is translocated into gastric epithelial cells and localizes to the inner surface of the plasma membrane, in which it undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif. Tyrosine-phosphorylated CagA specifically binds to and activates Src homology 2-containing protein-tyrosine phosphatase-2 (SHP-2) at the membrane, thereby inducing an elongated cell shape termed the hummingbird phenotype. Accordingly, membrane tethering of CagA is an essential prerequisite for the pathogenic activity of CagA. We show here that membrane association of CagA requires the EPIYA-containing region but is independent of EPIYA tyrosine phosphorylation. We further show that specific deletion of the EPIYA motif abolishes the ability of CagA to associate with the membrane. Conversely, reintroduction of an EPIYA sequence into a CagA mutant that lacks the EPIYA-containing region restores membrane association of CagA. Thus, the presence of a single EPIYA motif is necessary for the membrane localization of CagA. Our results indicate that the EPIYA motif has a dual function in membrane association and tyrosine phosphorylation, both of which are critically involved in the activity of CagA to deregulate intracellular signaling, and suggest that the EPIYA motif is a crucial therapeutic target of cagA-positive H. pylori infection.  相似文献   

5.
ABSTRACT: BACKGROUND: Chronic gastritis, peptic ulcer disease, and gastric cancer have been shown to be related toinfection with Helicobacter pylori (H. pylori). Two major virulence factors of H. pylori,CagA and VacA, have been associated with these sequelae of the infection. In this study, totalDNA was isolated from gastric biopsy specimens to assess the cagA and vacA genotypes. RESULTS: Variations in H. pylori cagA EPIYA motifs and the mosaic structure of vacA s/m/i/dayregions were analysed in 155 H. pylori-positive gastric biopsies from 71 individuals usingPCR and sequencing. Analysis of a possible association between cagA and vacA genotypesand gastroduodenal pathogenesis was made by logistic regression analysis. We found that H. pylori strains with variation in the number of cagA EPIYA motif variants present in the samebiopsy correlated with peptic ulcer, while occurrence of two or more EPIYA-C motifs wasassociated with atrophy in the gastric mucosa. No statistically significant relation betweenvacA genotypes and gastroduodenal pathogenesis was observed. CONCLUSIONS: The results of this study indicate that cagA genotypes may be important determinants in thedevelopment of gastroduodenal sequelae of H. pylori infection. In contrast to other studies,vacA genotypes were not related to disease progression or outcome. In order to fullyunderstand the relations between cagA, vacA and gastroduodenal pathogenesis, themechanisms by which CagA and VacA act and interact need to be further investigated.  相似文献   

6.
Background and Aims: Helicobacter pylori is a highly diverse pathogen, which encounters epithelial cells as the initial defense barrier during its lifelong infection. The structure of epithelial cells can be disrupted through cleavage of microfilaments. Cytokeratin 18 (CK18) is an intermediate filament, the cleavage of which is considered an early event during apoptosis following activation of effector caspases. Methods: Helicobacter pylori strains were isolated from 76 dyspeptic patients. cagA 3’ variable region and CagA protein status were analyzed by PCR and western blotting, respectively. Eight hours post‐co‐culture of AGS cells with different H. pylori strains, flow cytometric analysis was performed using M30 monoclonal antibody specific to CK18 cleavage‐induced neo‐epitope. Results: Higher rates of CK18 cleavage were detected during co‐culture of AGS cells with H. pylori strains bearing greater numbers of cagA EPIYA‐C and multimerization (CM) motifs. On the other hand, H. pylori strains with greater numbers of EPIYA‐B relative to EPIYA‐C demonstrated a decrease in CK18 cleavage rate. Thus, H. pylori‐mediated cleavage of CK18 appeared proportional to the number of CagA EPIYA‐C and CM motifs, which seemed to be downplayed in the presence of EPIYA‐B motifs. Conclusions: Our observation associating the heterogeneity of cagA variants with the potential of H. pylori strains in the induction of CK18 cleavage as an early indication of apoptosis in gastric epithelial cells supports the fact that apoptosis may be a type‐specific trait. However, additional cagA‐targeted experiments are required to clearly identify the role of EPIYA and CM motifs in apoptosis and/or the responsible effector molecules.  相似文献   

7.
Helicobacter pylori is a gastric pathogen that infects half the human population and causes gastritis, ulcers, and cancer. The cagA gene product is a major virulence factor associated with gastric cancer. It is injected into epithelial cells, undergoes phosphorylation by host cell kinases, and perturbs host signaling pathways. CagA is known for its geographical, structural, and functional diversity in the C-terminal half, where an EPIYA host-interacting motif is repeated. The Western version of CagA carries the EPIYA segment types A, B, and C, while the East Asian CagA carries types A, B, and D and shows higher virulence. Many structural variants such as duplications and deletions are reported. In this study, we gained insight into the relationships of CagA variants through various modes of recombination, by analyzing all known cagA variants at the DNA sequence level with the single nucleotide resolution. Processes that occurred were: (i) homologous recombination between DNA sequences for CagA multimerization (CM) sequence; (ii) recombination between DNA sequences for the EPIYA motif; and (iii) recombination between short similar DNA sequences. The left half of the EPIYA-D segment characteristic of East Asian CagA was derived from Western type EPIYA, with Amerind type EPIYA as the intermediate, through rearrangements of specific sequences within the gene. Adaptive amino acid changes were detected in the variable region as well as in the conserved region at sites to which no specific function has yet been assigned. Each showed a unique evolutionary distribution. These results clarify recombination-mediated routes of cagA evolution and provide a solid basis for a deeper understanding of its function in pathogenesis.  相似文献   

8.
Infection with Helicobacter pylori strains containing high number of EPIYA-C phosphorylation sites in the CagA is associated with significant gastritis and increased risk of developing pre-malignant gastric lesions and gastric carcinoma. However, these findings have not been reproduced in animal models yet. Therefore, we investigated the effect on the gastric mucosa of Mongolian gerbil (Meriones unguiculatus) infected with CagA-positive H. pylori strains exhibiting one or three EPIYA-C phosphorilation sites. Mongolian gerbils were inoculated with H. pylori clonal isolates containing one or three EPIYA-C phosphorylation sites. Control group was composed by uninfected animals challenged with Brucella broth alone. Gastric fragments were evaluated by the modified Sydney System and digital morphometry. Clonal relatedness between the isolates was considered by the identical RAPD-PCR profiles and sequencing of five housekeeping genes, vacA i/d region and of oipA. The other virulence markers were present in both isolates (vacA s1i1d1m1, iceA2, and intact dupA). CagA of both isolates was translocated and phosphorylated in AGS cells. After 45 days of infection, there was a significant increase in the number of inflammatory cells and in the area of the lamina propria in the infected animals, notably in those infected by the CagA-positive strain with three EPIYA-C phosphorylation sites. After six months of infection, a high number of EPIYA-C phosphorylation sites was associated with progressive increase in the intensity of gastritis and in the area of the lamina propria. Atrophy, intestinal metaplasia, and dysplasia were also observed more frequently in animals infected with the CagA-positive isolate with three EPIYA-C sites. We conclude that infection with H. pylori strain carrying a high number of CagA EPIYA-C phosphorylation sites is associated with more severe gastric lesions in an animal model of H. pylori infection.Key words: Gastritis, atrophy, intestinal metaplasia, dysplasia, Mongolian gerbil, cagA EPIYA C motif  相似文献   

9.
Lai YP  Yang JC  Lin TZ  Wang JT  Lin JT 《Helicobacter》2003,8(3):235-243
Background. Tyrosine phosphorylation of Helicobacter pylori cytotoxin‐associated protein of in gastric epithelial cells is reported. The goals of this study are first to examine the occurrence of CagA tyrosine phosphorylation in H. pylori strains isolated from patients with gastric adenocarcinoma and gastritis, and second to clarify the relationship between the diversity of tyrosine phosphorylation motifs and the presence of CagA tyrosine phosphorylation. Methods. Fifty‐eight clinical isolates of H. pylori from patients with gastric adenocarcinoma (29 cases) and gastritis (29 cases) were studied for CagA tyrosine phosphorylation by Western blotting. Sequence diversity of tyrosine phosphorylation motifs was analysed among positive‐ or negative‐CagA tyrosine phosphorylation isolates. Results. Positive CagA tyrosine phosphorylation was found in 93.1% (27 of 29) of strains from gastric adenocarcinoma patients and 51.7% (15 of 29) of strains from gastritis patients (p < 0.001). Intact motifs were found in H. pylori isolates with CagA tyrosine phosphorylation. Of the 16 negative CagA tyrosine phosphorylation isolates, intact tyrosine phosphorylation motifs were found in 15 isolates. Conclusions. CagA tyrosine phosphorylation, which is significantly greater in strains from gastric adenocarcinoma patients, may play a role in gastric carcinogenesis, and could be a better marker of more virulent strains than the cag pathogenicity island in Asia, where the cag pathogenicity island is present in nearly all H. pylori strains. Sequence diversity of tyrosine phosphorylation motifs on CagA was not related to the presence of tyrosine phosphorylation. The absence of tyrosine phosphorylation motif might result in negative tyrosine phosphorylation phenotypes, but such motifs are not the sole factors associated with CagA tyrosine phosphorylation.  相似文献   

10.
Aims:  To investigate the main genotypic virulence markers and the phenotypic features of an environmental Helicobacter pylori strain, named MDC1.
Methods and Results:  The H. pylori MDC1 genotypic status was evaluated by PCR amplification. The mosaicism in vac A alleles was expressed by the s1m1 allelic combination, as found in strains which are strong vacuolating cytotoxin producers; the number of cag A variable EPIYA motifs displayed P1P2P3P3 pattern and the ice A1 was recorded between the ice A allelic types and the bab A2 gene found in strains causing more severe disease. The biofilm formation was evaluated on a polystyrene surface in static conditions by scanning electron microscopy and confocal scanning laser microscopy. Helicobacter pylori MDC1 displayed a dense mature biofilm with cells in a coccoid morphology persistent in time in which the expression of the lux S gene, related to the quorum-sensing signalling, was always detected.
Conclusions:  Helicobacter pylori MDC1 strain had the main virulence markers closely related to gastric pathogenesis and displayed a well-structured biofilm which allowed this bacterium to be more protected in the environment.
Significance and Impact of the Study:  The persistence of the environmental virulent H. pylori strain in a clustered state suggests a long-term survival of this bacterial community outside of the host, enabling the bacterial transmission with important clinical repercussions.  相似文献   

11.
12.
Background:   cagA -positive and vacA s1 and m1 genotypes of Helicobacter pylori are associated with an elevated risk of gastric cancer (GC). We determined these genotypes using paraffin-embedded gastric biopsy specimens harvested from infected individuals and compared genotype distributions in two Colombian populations residing in geographic regions with a high and low incidence of GC.
Methods:   DNA from paraffin-embedded gastric biopsies from 107 adults was amplified using primers specific for cagA , for the cag 'empty site', for the s and m alleles of vacA , and for H. pylori 16S rRNA.
Results:   H. pylori infection was detected by molecular assays in 97 (90.7%) biopsies. Complete genotyping of cagA and vacA was achieved in 94 (96.9%) cases. The presence of cagA was detected in 78 of 97 cases (80.4%); when considered separately, cagA and vacA s regions were not significantly associated with a particular geographic area. The vacA m1 allele and s1m1 genotypes were more common in the area of high risk for GC ( p =  .037 and p  = .044, respectively), while the vacA m2 allele and s2m2 genotypes were more prevalent in the low-risk area. The prevalence of the combination of cagA -positive, vacA s1m1 genotypes was 84.3% and 60.5% for high and low risk areas, respectively ( p =  .011).
Conclusions:  H. pylori cagA and vacA genotyping from paraffin-embedded gastric biopsies permitted reliable typability and discrimination. The more virulent cagA- positive s1m1 strains, as well as vacA m1 genotype, were more prevalent in high risk than in low risk areas, which may contribute to the difference in GC risk between those two regions.  相似文献   

13.
Chronic infection with Helicobacter pylori strains expressing the bacterial oncoprotein CagA confers an increased risk of gastric cancer. While much is known about the ancestry and molecular evolution of Western, East Asian, and Amerindian cagA sequences, relatively little is understood about a fourth group, known as "J-Western," which has been detected mainly in strains from Okinawa, Japan. We show here that J-Western cagA sequences have a more widespread global distribution than previously recognized, occur in strains with multiple different ancestral origins (based on multilocus sequence typing [MLST] analysis), and did not arise recently. As shown by comparisons of Western and J-Western forms of CagA, there are 45 fixed or nearly fixed amino acid differences, and J-Western forms contain a unique 4-amino-acid insertion. The mean nucleotide diversity of synonymous sites (π(s)) is slightly lower in the J-Western group than in the Western and East Asian groups (0.066, 0.086, and 0.083, respectively), which suggests that the three groups have comparable, but not equivalent, effective population sizes. The reduced π(s) of the J-Western group is attributable to ancestral recombination events within the 5' region of cagA. Population genetic analyses suggest that within the cagA region encoding EPIYA motifs, the East Asian group underwent a marked reduction in effective population size compared to the Western and J-Western groups, in association with positive selection. Finally, we show that J-Western cagA sequences are found mainly in strains producing m2 forms of the secreted VacA toxin and propose that these functionally interacting proteins coevolved to optimize the gastric colonization capacity of H. pylori.  相似文献   

14.
Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT) in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase) was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk.  相似文献   

15.
Chronic Helicobacter pylori infection is known to be associated with the development of peptic ulcer, gastric cancer and gastric lymphoma. Currently, the bacterial factors of H. pylori are reported to be important in the development of gastroduodenal diseases. CagA protein, encoded by the cagA, is the best studied virulence factor of H. pylori. The pathogenic CagA protein contains a highly polymorphic Glu-Pro-Ile-Tyr-Ala (EPIYA) repeat region in the C-terminal. This repeat region is reported to be involved in the pathogenesis of gastroduodenal diseases. The segments containing EPIYA motifs have been designated as segments A, B, C, and D; however the classification and disease relation are still unclear. This study used 560 unique CagA sequences containing 1,796 EPIYA motifs collected from public resources, including 274 Western and 286 East Asian strains with clinical data obtained from 433 entries. Fifteen types of EPIYA or EPIYA-like sequences are defined. In addition to four previously reported major segment types, several minor segment types (e.g., segment B′, B′′) and more than 30 sequence types (e.g., ABC, ABD) were defined using our classification method. We confirm that the sequences from Western and East Asian strains contain segment C and D, respectively. We also confirm that strains with two EPIYA segment C have a greater chance of developing gastric cancer than those with one segment C. Our results shed light on the relationships between the types of CagAs, the country of origin of each sequence type, and the frequency of gastric disease.  相似文献   

16.
Background. The aim of this study was to assess the seroprevalence of cytotoxin-associated gene A ( cag A) and vacuolating cytotoxin gene A ( vac A) of Helicobacter pylori in selected Thai populations with specific gastroduodenal diseases.
Materials and Methods. The immunoblot assay was used to detect serum antibodies against CagA and VacA obtained from the following patients: 87 cases of nonulcer dyspepsia (NUD), 61 cases of duodenal ulcer (DU), 49 cases of gastric ulcer (GU), and 10 cases of gastric cancer (GC).
Results. Serum antibodies to CagA were detected in 75.4% of all patients (70.1% of NUD, 78.7% of DU, 77.6% of GU, and 90% of GC). Although the prevalence of CagA seropositivity in GC patients was higher than in the other three groups, the difference was not statistically significant ( p > .05).
Conclusions. The high seroprevalence of the CagA-positive H. pylori strain in patients with peptic ulcer, GC, and NUD indicates that this strain is common in Thai patients with gastroduodenal diseases. Furthermore, phenotypic classification of H. pylori into type 1 (CagA-positive, VacA-positive) and type 2 (CagA-negative, VacA-negative) is not a useful marker for screening patients with severe forms of gastroduodenal diseases.  相似文献   

17.
Young sedentary adult males of Malay, Indian, and Chinese origin who had established continuous residence in tropical Malaysia and presumed to be naturally acclimatized to heat, were studied to evaluate their physiological responses to a standard heat stress test. The Malay and Indian races have evolved in hot and humid geographical zones, whereas the Chinese originated from a temperate area. Subjects exercised at 50% VO2max alternating 18 minutes walking and 2 min rest during a 2-h exposure to an ambient of 34.9 degrees C dry bulb and 32.1 degrees C wet bulb. Heart rates, core and skin temperatures, sweat rates, and oxygen uptakes were measured during the heat exposure. The subjects of Malay origin exhibited the least circulatory stress of the three ethnic groups. The data obtained on these long-term residents of a hot-wet climate and who were considered acclimatized to this environment were compared to experimental data obtained by other investigators and other ethnic groups.  相似文献   

18.
Chronic infection with Helicobacter pylori cagA-positive strains is associated with atrophic gastritis, peptic ulceration, and gastric carcinoma. The cagA gene product, CagA, is delivered into gastric epithelial cells via type IV secretion, where it undergoes tyrosine phosphorylation at the EPIYA motifs. Tyrosine-phosphorylated CagA binds and aberrantly activates the oncogenic tyrosine phosphatase SHP2, which mediates induction of elongated cell morphology (hummingbird phenotype) that reflects CagA virulence. CagA also binds and inhibits the polarity-regulating kinase partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) via the CagA multimerization (CM) sequence independently of tyrosine phosphorylation. Because PAR1 exists as a homodimer, two CagA proteins appear to be passively dimerized through complex formation with a PAR1 dimer in cells. Interestingly, a CagA mutant that lacks the CM sequence displays a reduced SHP2 binding activity and exhibits an attenuated ability to induce the hummingbird phenotype, indicating that the CagA-PAR1 interaction also influences the morphological transformation. Here we investigated the role of CagA dimerization in induction of the hummingbird phenotype with the use of a chemical dimerizer, coumermycin. We found that CagA dimerization markedly stabilizes the CagA-SHP2 complex and thereby potentiates SHP2 deregulation, causing an increase in the number of hummingbird cells. Protrusions of hummingbird cells induced by chemical dimerization of CagA are further elongated by simultaneous inhibition of PAR1. This study revealed a role of the CM sequence in amplifying the magnitude of SHP2 deregulation by CagA, which, in conjunction with the CM sequence-mediated inhibition of PAR1, evokes morphological transformation that reflects in vivo CagA virulence.  相似文献   

19.
Helicobacter pylori infection of a distinct subtype of cagA may lead to different pathological manifestation. The aim of this study is to determine the presence of cagA gene and its variants in H. pylori infection among different ethnic groups and its effect on gastroduodenal diseases. Overall detection of cagA among the 205 clinical isolates of H. pylori was 94%. Variations in size of the 3' region of cagA gene were examined among 192 Malaysian H. pylori cagA-positive strains. Results showed that three cagA variants differing in fragment length of PCR products were detected and designated as type A (621-651bp), type B (732-735bp) and type C (525 bp). Although there was no association between any of the cagA subtypes with peptic ulcer disease (p>0.05), an association between cagA subtypes with a specific ethnic group was observed. Specific-cagA subtype A strains were predominantly isolated from Chinese compared to Malays and Indians (p<0.0005), and cagA subtype B strains were predominantly isolated from Malays and Indians compared to Chinese (p<0.05). The cagA type A strains of H. pylori is commonly found in the Chinese patients who have a higher risk of peptic ulcer disease, thus indicating that it could be used as an important clinical biomarker for a more severe infection.  相似文献   

20.
Helicobacter pylori infection is a leading cause of ulcers and gastric cancer. We show that expression of the H. pylori virulence factor CagA in a model Drosophila melanogaster epithelium induces morphological disruptions including ectopic furrowing. We find that CagA alters the distribution and increases the levels of activated myosin regulatory light chain (MLC), a key regulator of epithelial integrity. Reducing MLC activity suppresses CagA-induced disruptions. A CagA mutant lacking EPIYA motifs (CagA(EPISA)) induces less epithelial disruption and is not targeted to apical foci like wild-type CagA. In a cell culture model in which CagA(EPISA) and CagA have equivalent subcellular localization, CagA(EPISA) is equally potent in activating MLC. Therefore, in our transgenic system, CagA is targeted by EPIYA motifs to a specific apical region of the epithelium where it efficiently activates MLC to disrupt epithelial integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号