首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In a survey ofAzospirillum spp. on the roots and associated soil of wheat grown in eastern Australia, azospirilla were isolated from approximately 40% of samples from areas of soil pH between 5.0 and 6.6. However, azospirilla isolates were rare in soil between pH 4.5 and 5.0 and absent below pH 4.5. Of 25 independent isolates, 17 wereA. brasiliense and eight wereA. lipoferum. No selection forA. brasiliense Nir strains by wheat roots was observed. Only one of six endorhizosphere isolates wereA. brasiliense Nir, compared with three of nine from unsterilized roots plus associated soil, and three of eight from soil. With a medium buffered with 0.05 M malate and 0.05 M phosphate, it was found that allAzospirillum isolates had a lower minimum pH for growth when supplied with fixed nitrogen than when grown under nitrogen-fixing conditions. Strains isolated from soils had a minimum pH for growth that was less than the pH of the soil from which they were isolated. However, a significant proportion of strains isolated from roots had a minimum pH for growth that was higher than the pH of the associated soil suggesting that the wheat roots provided an ecological niche protecting against soil acidity.  相似文献   

2.
Total aerobic heterotrophs and N2-fixing putative azospirilla associated with rice plant grown in long-term unfertilized wetland rice field at 5 sites in the Philippines were enumerated. Several azospirilla isolates were identified based on cellular morphology, biochemical tests and reaction to immunodiffusion. Azospirilla constitute about one percent of the total aerobic heterotrophs. Most (85%) of the Azospirillum isolates belong toA. lipoferum indicating its preferential colonization to the rice plant.  相似文献   

3.
White clover plants were grown for 97 days under two temperature regimes (20/15°C and 8/5°C day/night temperatures) and were supplied with either small amounts (a total of 80 mg N pot–1) of ammonium (NH 4 + ) or nitrate (NO 3 ) nitrogen, or received no mineral N and relied on N2 fixation. Greatest growth and total leaf area of clover plants occurred in N2 fixing and NO 3 -fed plants grown at 20/15°C and poorest growth occurred in NH 4 + -fed plants grown at 8/5°C. Nodule mass per plant was greater at 8/5°C due to increased nodule numbers rather than increased dry weight per nodule. This compensated to some extent for the reduced N2-fixing activity per unit dry weight of nodule tissue found at the low growth temperature up to 116 d after sowing, but thereafter both activity per nodule dry weight and activity per plant were greater at the low temperature. Highest nitrate reductase activity (NRA) per g fresh weight and total activity per leaf, petiole or root occurred in NO 3 -fed plants at 8/5°C. Low growth temperature resulted in a greater partitioning of total plant NRA to the roots of NO 3 -fed plants. The results are considered in relation to the use of N fertiliser in the spring under field conditions.  相似文献   

4.
Hydraulic redistribution: limitations for plants in saline soils   总被引:1,自引:0,他引:1       下载免费PDF全文
Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build‐up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non‐saline soils, will experience a dampened magnitude of water potential gradients in the soil–plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.  相似文献   

5.
A nitrogen fixing organism containing a plasmid has been isolated from the rhizosphere fraction ofLeptochloa fusca (L) Kunth (kallar grass) growing on saline soils in the Punjab area. This bacterium can grow aerobically in a medium containing 1M NaCl and can fix nitrogen efficiently under microaerobic conditions on semi-solid medium with glucose or sucrose as a carbon source. Maximum N2-fixation in batch cultures occurred with 100 mM NaCl at pH 8.0 and 35°C. DNA hybridization and analysis of the protein pattern were carried out to establish its taxonomic position. On the basis of protein electrophoretic pattern, physiological characteristics, DNA relatedness, and better growth in the presence of high NaCl concentration, we regard this strain as a new species ofKlebsiella.  相似文献   

6.
The interactive effect of low P supply (0, 10, 20 and 40 M) and plant age on nodule number, mass and functioning (ureide analysis technique), vegetative growth and pod production were investigated in glasshouse-grown nodulated cowpea (Vigna unguiculata L.cv. Kausband) in sand culture. Compared with 40 M P, P stress (0 M P) or very low (10 M P) supply markedly impaired nodulation, allantoin and amino-N concentrations and weight of N solutes in xylem exudates. Consequently, P stress reduced top growth and pod yields by 48 and 90%, respectively. N solutes in xylem exudates and total plant N assayed by Kjeldahl technique (as estimates of N2 fixation) responded similarly to P supply. However, the relative ureide index [(ureide-N/ureide N+amino-N)×100] remained constant (99%), irrespective of P supply, indicating the plants' complete dependency on symbiosis for growth, without implying that growth was markedly increased by N2 fixation. Although P concentrations in plant tops, roots and nodules increased with P supply, N concentrations in these plant tissues were unaffected by P supply. The concentrations of N and P in the nodules were 2–2 1/2 times higher than in plant tops. P application interacted strongly with plant age, with the largest P effect evidently achieved at the early podding stage. The significance and implications of these results are discussed.  相似文献   

7.
FourteenAzospirillum brasilense strains growing at a sub-optimum temperature were selected based on their ability to grow and carry out plant growth promoting activities at 22°C. The strains were tested for their response to inoculation in wheat (two popular cultivars, HD2285 and WH547, under sterile conditions) crop using sterile and nonsterile rooting medium. Significant increase in plant growth parameters was observed: the overall response to inoculation was better in cultivar HD 2285. Based on their performance under sterile conditions, 4 strains were selected and compared under nonsterile conditions with strain sensitive to a sub-optimum temperature in pots using wheat variety HD2285. The strains capable of growing at the sub-optimum temperature can colonize the wheat endorhizosphere efficiently and improve the plant growth and yield as compared to sensitive strain; a 25–27% increase in grain yield was found on inoculating two selected strains compared to NO 3 - control.  相似文献   

8.
Isolation and identification of root associated diazotrophs   总被引:5,自引:0,他引:5  
Diazotrophs have been isolated from the rhizosphere or roots of plants by many workers. To recognize a certain diazotroph as the most abundant bacterium at a certain site or as the principal agent responsible for N2-fixation is much more difficult. It is probable that many diazotrophs, including possibly the most efficient ones, have not been identified yet. The use of proper selective media which simulate the environment of the various diazotrophsin situ has led to the discovery of 10 new root-associated diazotrophs, three of them during 1986/1987 (Azospirillum halopraeferans, Herbaspirillum seropedicae and the recently proposedAcetobacter diazotrophicus). The importance of using a variety of carbon substrates in the growth media with pH indicators, and the use of N-free semi-solid media, is discussed. Recognition of plant-bacteria interactions requires, in addition to the identification of the bacteria, the demonstration of effects of the plant on the bacteria and of the bacteria on the plant. Confirmation of the identity of diazotrophs responsible for response of plants to inoculation must be made in experiments with strains labelled with antibiotic resistance or other markers. If establishment of the inoculated strain is demonstrated in plants grown in15N-labelled soil, the15N enrichment of the plants will reveal if any observed responses in N yield are due to N2-fixation or increased soil/fertilizer-N uptake.  相似文献   

9.
The protochlorophyll pools of roots of dark-grown wheat ( Triticum aestivum L. cv. Walde), maize ( Zea mays L. cv. Goldcrest) and wrinkledseeded pea ( Pisum sativum L. ssp. sativurh cv. Kelvedon Wonder) were investigated by high performance liquid chromatography (HPLC) and low temperature fluorescence spectroscopy. All roots contained protochlorophyllide and esterified protochlorophyllides (protochlorophylls) but with considerably larger relative amounts of the latter compared with etiolated leaves. The alcohol moieties of the 4 detected protochlorophylls were geranylgeraniol (GG), dihydrogeranylgeraniol (DHGG), tetrahydrogeranylgeraniol (THGG) and phytol. The relative amounts of the different protochlorophylls varied between the species. Protochlorophyllide and the 4 protochlorophylls all contained monovinyl forms. The divinyl forms could not be detected by our instruments. Wrinkledseeded pea contained in addition chlorophyll a , some unidentified chlorophylls and negligible amounts of chlorophyllide. Small amounts of carotenoids were found in roots of all investigated species. The carotenoids were the same as those found in green or etiolated leaves, but present in different relative amounts.  相似文献   

10.
Interactions were studied between oat (Avena sativa) and two bacterial species, Bacillus subtilis and Pantoea agglomerans, in soils contaminated with heavy metals (HM), cadmium (50 mg/kg), and lead (200 mg/kg). Exposure to HM resulted in decreased (by 30–50%) length, mass, and ratio of shoot to root dimensions. Inoculation with bacteria lead to restoration and further enhancement of plant productivity, raising it above the level achieved via inoculation of oat in uncontaminated soils. It also reduced HM accumulation by plants. Pure cultures of P. agglomerans accumulate HM more intensively than those of B. subtilis (adsorbing activity was studied for both cells and extracellular metabolites). After the introduction of bacteria, lead, and cadmium content in soil decreased four- to fivefold and two- to threefold, respectively. Protection from HM is attributable to reorganizations in the populations of root-associated bacteria: cell number increases in the rhizoplane while decreasing in the rhizosphere.  相似文献   

11.
R. Rai 《Plant and Soil》1991,137(1):55-59
Three salt-tolerantAzospirillum brasilense strains were isolated from the roots of finger millet grown in saline calcareous soil and characterized. The effect of various salts on growth and N2ase activity of these strains was tested and strain STR1 was found more tolerant at higher concentrations of Cl-, SO4 2 and HCO3 -. Bicarbonate was found to be the most toxic. The content and concentrations of root exudates of finger millet genotypes were different and chemotaxis to sugars, amino acids, organic acids and root exudates was strain specific. Under salt stress, significant interactions between strains and genotypes of finger millet resulted in different responses of N2ase activity, endo- and exorhizospheric population, dry weight of root, shoot and grain yield.  相似文献   

12.
A relationship between inoculation and elemental uptake ofMedicago sativa inoculated withRhizobia meliloti (isolated from a saline area) was found. The plant uptake of the elements with atomic number between 19 and 42 was significantly higher in plants grown on inoculated soils, with the exception of molybdenum. Preliminary evidence shows that the concentration of some elements was affected by inoculation.  相似文献   

13.
The aim of this work was to discover whether oxygen tensions in the roots of marsh plants in flooded soils are high enough to allow fully acrobic metabolism. Activity of alcohol dehydrogenase (ADH), a protein synthesised in anoxic plants, was measured in roots of marsh plants growing in habitats where the availability of oxygen to the roots would be expected to differ. Roots of Carex riparia in standing water had ADH activities about 2.5 times higher than those of phosphofructokinase, and comparable to ADH activities of Poa trivialis, Urtica dioica and Ranunculus repens roots in dry soil. Removal of the oxygen supply via aerenchyma to Carex roots caused a 30-fold increase in ADH activity relative to that of phosphofructokinase. There was no change in ADH activity with depth in Carex roots in waterlogged soil, but in Filipendula ulmaria roots activity was 14 times higher below 10 cm depth than near the surface. Urtica roots in waterlogged soil had alcohol dehydrogenase activities 26 times higher than roots in dry soil, but for Poa and Ranunculus roots this figure was only 1.7 and 4.2, respectively. These results indicate that the oxygen tensions in the roots of marsh plants in waterlogged soil differ considerably among species. Ethanol was the major product of fermentation in roots of all species studied. There was no correlation between ADH activity and the rate of ethanol production under anoxia of Urtica roots. The physiological significance of high ADH activities in roots is thus unclear.Abbreviations ADH alcohol dehydrogenase - PFK phosphofructokinase - PFP pyrophosphate:fructose 6-phosphate phosphotransferase  相似文献   

14.
Antioxidant enzymes are related to the resistance to various abiotic stresses including salinity. Barley is relatively tolerant to saline stress among crop plants, but little information is available on barley antioxidant enzymes under salinity stress. We investigated temporal and spatial responses of activities and isoform profiles of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), non-specific peroxidase (POX), and glutathione reductase (GR) to saline stress in barley seedlings treated with 200 mM NaCl for 0, 1, 2, 5 days, respectively. In the control plant, hydrogen peroxide content was about 2-fold higher in the root than in the shoot. Under saline stress, hydrogen peroxide content was decreased drastically by 70% at 2 d after NaCl treatment (DAT) in the root. In the leaf, however, the content was remained unchanged by 2 DAT and increased about 14 % at 5 DAT. In general, the activities of antioxidant enzymes were increased in the root and shoot under saline stress. But the increase was more significant and consistent in the root. The activities of SOD, CAT, APX, POX, and GR were increased significantly in the root within 1 DAT, and various elevated levels were maintained by 5 DAT. Among the antioxidant enzymes, CAT activity was increased the most drastically. The significant increase in the activities of SOD, CAT, APX, POX, and GR in the NaCl-stressed barley root was highly correlated with the increased expression of the constitutive isoforms as well as the induced ones. The hydrogen peroxide content in the root.  相似文献   

15.
Summary The content of elements in needles ofPinus caribaea trees growing upon infertile savanna soils was analysed at 3 and 5 years after the tap roots of a subset of trees had been severed. No significant differences were found between the content of elements in treated and control trees, nor were significant differences found in increments of diameter of the trees over 5 years. It is concluded that this organ plays no significant nutritional role in the trees on these soils, and that tree growth can be achieved exclusively from atmospheric nutrient accessions and exchangeable nutrient reserves in the topsoil.  相似文献   

16.
Summary The nitrification rate in the rhizosphere of Suaeda and Arthrocnemum plants growing in saline soils, as affected by microbial populations, temperature, pH, and organic matter, was examined in the field throughout the year. The genera Nitrosomonas and Nitrobacter were most common in the rhizosphere soil. The bacterial counts in the rhizosphere of both plants fluctuated during the study period, reaching peak values during February–March and in August. The nitrate concentration in the rhizosphere soil could be related with the observed increase in the numbers of ammonium-oxidizers and nitrite-oxidizers in the latter part of the study period. The pH of the rhizosphere soils did not have any influence on the nitrification rate at the values measured. The rhizosphere organic content varied between 1.8 and 4% (w/w), showing the continuous availability of organic matter in the soil. The seasonal changes in bacterial populations in the rhizospheres of both plants was described as the result of the combination of several factors.  相似文献   

17.
It has been pointed out that tea (Camellia sinensis (L.) O. Kuntze) prefers ammonium (NH 4 + ) over nitrate (NO 3 ? ) as an inorganic nitrogen (N) source. 15N studies were conducted using hydroponically grown tea plants to clarify the characteristics of uptake and assimilation of NH 4 + and NO 3 ? by tea roots. The total 15N was detected, and kinetic parameters were calculated after feeding 15NH 4 + or 15NO 3 ? to tea plants. The process of N assimilation was studied by monitoring the dynamic 15N abundance in the free amino acids of tea plant roots by GC-MS. Tea plants supplied with 15NH 4 + absorbed significantly more 15N than those supplied with 15NO 3 ? . The kinetics of 15NH 4 + and 15NO 3 ? influx into tea plants followed a classic biphasic pattern, demonstrating the action of a high affinity transport system (HATS) and a low affinity transport system (LATS). The V max value for NH 4 + uptake was 54.5 nmol/(g dry wt min), which was higher than that observed for NO 3 ? (39.3 nmol/(g dry wt min)). KM estimates were approximately 0.06 mM for NH 4 + and 0.16 mM for NO 3 ? , indicating a higher rate of NH 4 + absorption by tea plant roots. Tea plants fed with 15NH 4 + accumulated larger amounts of assimilated N, especially glutamine (Gln), compared with those fed with 15NO 3 ? . Gln, Glu, theanine (Thea), Ser, and Asp were the main free amino acids that were labeled with 15N under both conditions. The rate of N assimilation into Thea in the roots of NO 3 ? -supplied tea plants was quicker than in NH 4 + -supplied tea plants. NO 3 ? uptake by roots, rather than reduction or transport within the plant, seems to be the main factor limiting the growth of tea plants supplied with NO 3 ? as the sole N source. The NH 4 + absorbed by tea plants directly, as well as that produced by NO 3 ? reduction, was assimilated through the glutamine synthetase-glutamine oxoglutarate aminotransferase pathway in tea plant roots. The 15N labeling experiments showed that there was no direct relationship between the Thea synthesis and the preference of tea plants for NH 4 + .  相似文献   

18.
A site in central Taiwan with an area of 1.3 ha and contaminated with Cr, Cu, Ni, and Zn was selected to examine the feasibility of phytoextraction. Based on the results of a preexperiment at this site, a total of approximately 20,000 plants of 12 species were selected from plants of 33 tested species to be used in a large-area phytoextraction experiment at this site. A comparison with the initial metal concentration of 12 plant species before planting demonstrated that most species accumulated significant amounts of Cr, Cu, Ni, and Zn in their shoots after growing in this contaminated site for 31 d. Among the 12 plant species, the following accumulated higher concentrations of metals in their shoots; Garden canna and Garden verbena (45-60 mg Cr kg(-1)), Chinese ixora and Kalanchoe (30 mg Cu kg(-1)), Rainbow pink and Sunflower (30 mg Ni kg(-1)), French marigold and Sunflower (300-470 mg Zn kg(-1)). The roots of the plants of most of the 12 plant species can accumulate higher concentrations of metals than the shoots and extending the growth period promotes accumulation in the shoots. Large-area experiments demonstrated that phytoextraction is a feasible method to enable metal-contaminated soil in central Taiwan to be reused.  相似文献   

19.
Use of eco-friendly area specific salt tolerant bioinoculants is better alternatives to chemical fertilizer for sustainable agriculture in coastal saline soils. We isolated diverse groups of diazotrophic bacteria from coastal saline soils of different forest and agricultural lands in the Sundarbans, West Bengal, India, to study their effect on crop productivity in saline soils. Phenotypic, biochemical and molecular identifications of the isolates were performed. The isolates produced indole acetic acid, phosphatase, and solubilized insoluble phosphates. Sequence analysis of 16S rDNA identified the SUND_BDU1 strain as Agrobacterium and the strains SUND_LM2, Can4 and Can6 belonging to the genus Bacillus. The ARA activity, dinitrogen fixation and presence of nifH genes indicated they were diazotrophs. Field trials with these strains as bioinoculants were carried out during 2007-2009, with rice during August-December followed by Lady's finger during April-June. Microplots, amended with FYM inoculated with four bioinoculants individually were compared against sole FYM (5 t ha(-1)) and a sole chemical fertilizer (60:30:30 kg ha(-1) NPK) treated plot. The strain Can6 was by far the best performer in respect of yield attributes and productivity of studied crops.  相似文献   

20.
Mature plants were regenerated via protoplasts fromAgrobacterium rhizogenes-transformed root cultures ofHyoscyamus muticus L., and chemical analyses were performed on 34 individual plants. The regenerated plants showed strong phenotypic differences from clone to clone as well as from the control plants. Polymerase chain reaction studies revealed that the plants exhibiting the strongest phenotypic alterations contained therol (A, B and C) genes, whereas the plants with fewer alterations had lost them. The plants produced hyoscyamine, scopolamine and a range of different calystegins, and considerable somaclonal variation was observed. Alkaloid production in the plants transgenic for therol genes was clearly reduced. The pattern of calystegins was similar within all the regenerated plants lackingrol genes. Among the plants withrol genes, the calystegin B1 was not detectable. It seems clear that the presence ofrol genes is detrimental to the alkaloid accumulation in the transgenic plants in contrast to hairy root cultures.Abbreviation PCR Polymerase chain reaction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号