首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The essential oil of Caesulia axillaris has exhibited its fungitoxicity against Aspergillus flavus at its minimum inhibitory concentration of 1300 mg/l. It showed the potentiality of an ideal fungitoxicant because of its long shelf life, thermostable nature, broad fungitoxic spectrum and persistence of fungitoxicity even on introduction of high inoculum density of the test fungus. The fungitoxic principle of the oil was standardized as -asarone which showed fungitoxicity against the test fungus at 500 mg/l.  相似文献   

2.
During screening of the leaves of 25 plant species for their volatile toxicity against the test pathogen Fusarium lateritium f.sp.cajani, Aegle marmelos (Ae), Citrus aurantifolia (Ci) and Mentha arvensis var. piperascens (Me) exhibited strong toxicity inhibiting the mycelial growth completely. The active volatile constituents from each plant were isolated in the form of essential oil and the fungitoxicity of each oil was tested separately. The Aegle oil was found fungistatic while Citrus and Mentha oils were fungicidal in nature. Three oil combination (1:1 v/v) viz., Ae-Ci, Ae-Me and Ci-Me were made and their fungitoxicity was tested. The oil combinations were found to be more fungitosic than the individual oils, which were fungistatic in nature. The Ci-Me combination exhibited a broad fungitoxic spectrum while the other two Ae-Ci and Ae-Me possessed a narrow range of toxicity. The oils were found to have no toxic effect on seed germination, seedling growth (root and shoot length), and general morphology of the host plant(Cajanus cajan).  相似文献   

3.
Hyptis suaveolens L. (Poit.) essential oil was tested in vitro on the growth and morphogenesis of Fusarium oxysporum f.sp. gladioli (Massey) Snyder & Hansen, which causes Fusarium corm rot and yellows in various susceptible cultivars of gladiolus. The fungitoxicity of the oil was measured by percentage radial growth inhibition using the poisoned food technique (PF) and volatile activity assay (VA). The mycelial growth of the test fungus was completely inhibited at 0.998 and 0.748 μg ml−1 concentration of oil in PF and VA, respectively. Essential oil was found to be fungicidal in nature at 1.247 and 0.998 μg ml−1 concentration of oil in PF and VA, respectively. Determination of conidial germination in the presence of oil was also carried out and it was found that the oil exhibited 100% inhibition of conidial germination at 0.450 μg ml−1 concentration. The effect of essential oil on the yield of mycelial weight was observed and it was found that at 0.873 μg ml−1 concentration no mycelium was recorded and 100% inhibition was observed. The fungitoxicity of oil did not change even on exposure to 100°C temperature or to autoclaving, and the oil also retained its fungicidal nature even after storage of 24 months. The main changes observed under light microscopy after oil treatment were a decrease and loss of conidiation and anomalies in the hyphae such as a decrease in the diameter of hyphae and granulation of cytoplasm. The treatment of the oil also showed highly reduced cytoplasm in the hyphae, showing clear retraction of the cytoplasm from the hyphae and ultimately in some areas hyphae without cytoplasm were also found. GC-MS studies of the essential oil revealed that the oil consisted of 24 compounds with 1,8-cineole as major component accounting for 44.4% of the total constituents.  相似文献   

4.
The leaves of Ocimum gratissimum (Clocimum) exhibited strong volatile fungitoxicity against betelvine (Piper betle L.) pathogens—Alternaria alternata, Colletotrichum capsici and Sclerotium rolfsii. Fifteen compounds could be identified from the fungitoxic constituents—the essential oil. The oil at its minimum inhibitory concentrations of 50, 250 and 500 ppm against S. rolfsii, A. alternata and C. capsici, respectively, was fungistatic, although, fungicidal at higher concentrations. Eugenol was found to be the major fungitoxic principle in the oil. The oil was either equally effective or superior to synthetic commercial fungicides and was non-phytotoxic to the host plants. Thus, the oil can be used as a valuable indigenous and biodegradable agent against fungi that cause losses to the betelvine industry.  相似文献   

5.
Summary The essential oil extracted from the epicarp of Citrus sinensis exhibited absolute fungitoxicity against the 10 post-harvest pathogens. GC–MS studies of the oil revealed the presence of 10 chemical constituents, of which limonene was found to be the major component (84.2%). The activity of the oil was tested by the poisoned food technique (PF) and the volatile activity (VA) assay and the oils showed greater toxicity in the VA assay than in the poisoned food assay. The nature of the toxicity was studied in the VA assay and it was observed that the oil was fungicidal for the 10 pathogens in the 700 ppm (mg/l) to 1000 ppm range. The oil was extremely toxic for spore germination and it was found that at 700 ppm, spore germination was inhibited in the 10 test fungi out of the 12 tested. Treatment at 300 ppm concentration exhibited 70–100% inhibition of spore germination in most of the fungi tested. Scanning electron microscopy (SEM) was done to study the mode of action of the oil in Aspergillus niger and it was observed that treatment with the oil leads to distortion and thinning of the hyphal wall and the reduction in hyphal diameter and absence of conidiophores.  相似文献   

6.
Summary Leaves ofChenopodium ambrosioides exhibited strong fungitoxicity against the mycelial growth ofRhizoctonia solani causing damping off diseases of some seedlings. Minimum inhibitory concentration of the fungitoxic constituent isolated in form of essential oil, was found to be 1000 ppm at which it was fungicidal in nature. It exhibited broad range of antifungal activity and did not show any phytotoxicity on the germination and seedling growth ofPhaseolus aureus.  相似文献   

7.
In this research we present that Carthamus Tinctorius L. (gen. Asteraceae, otherwise known as Safflower) (Fig. 1) may contain agents active in Cryptococcal infections, malaria and Leishmaniasis, as treatment options are becoming scarce due to drug resistance development. Phytochemistry and pharmacological activities (antimicrobial, antimalarial, antileishmanial) of C. tinctorius L. were analyzed. The composition of volatile oil of safflower dried flowers was analyzed by gas chromatography-mass spectrophotometry with flame ionization detector (GC-FID) and in vitro sensitivity assays were performed to assess biological activity. 8 known and 3 unknown compounds were detected in the extract (Fig. 1). Then the Safflower ointment was manufactured and its acute toxicity study on rats was tested. The volatile oil of C. tinctorius L exhibited activity against Cryptococcus neoformans, Plasmodium falciparum and Leishmania donovani. Safflower volatile oil has anticryptococcal, antimalarial and antileishmanial effects. The prepared ointment had an excellent acute toxicity safety profile.  相似文献   

8.
Of the five essential oils screened against Helminthosporium oryzae, the oils of Cymbopogon martinii (ginger grass oil), Cymbopogon oliveri, Cymbopogon sp. (rosa sofia oil) and Trachyspermum ammi (dethymolysed oil) exhibited strong fungitoxicity and showed wide range of activity. The oils were found more active than some of the prevalent synthetic fungicides and thus might be exploited as natural fungicides if successful infield trials. Besides, these oils were found toxic to various human pathogens.  相似文献   

9.
The study reports fungal biodeterioration of herbal raw materials of Adhatoda vasica Nees and Withania somnifera Dunal and assessment of Abelmoschus moschatus Medik seed essential oil (AMEO) as antifungal, antiaflatoxigenic, and antioxidant. Seven fungal species belonging to three genera were isolated from Adhatoda vasica leaves and Withania somnifera roots. The minimum inhibitory, fungicidal, and aflatoxin inhibitory concentrations of AMEO were found to be 1750, 5000, and 1250 ppm, respectively, against A. flavus LHP-WS-1, isolated from W. somnifera. The effect of AMEO over ergosterol content in the plasma membrane was assessed to test the mode of action on A. flavus. AMEO also exhibited broad fungitoxicity at its minimum inhibitory concentration (MIC) and strong antioxidant property through 2,2-diphenyl-1-picrylhydrazyl (DPPH) analysis having IC50 value equal to 0.325 μL/mL. In view of strong antifungal, antiaflatoxigenic, and antioxidant activity, the AMEO may be recommended as botanical preservative for herbal raw materials in order to enhance their shelf life and to maintain their quality.  相似文献   

10.
Zanthoxylum limoncello is a native plant from southern Mexico which is used as a timber source, condiment and as a traditional medicine. Herein, we report on the volatile content of the leaf essential oil and its biological activities. The annual essential oils (2015–2018) contained volatile organic compounds which exhibited a moderate growth inhibitory activity against H. pylori ATCC 53504 (MIC 121.4–139.7 μg mL?1), 26695 (MIC 85.5–94.9 μg mL?1) and J99 (MIC 94.7–110.4 μg mL?1). These hydrodistillates contained 2‐undecanone (31.6–36.8 %; MIC 185.3–199.2 μg mL?1) and 2‐undecenal (25.1–35.7 %; MIC 144.8–111.3 μg mL?1) as the most abundant compounds which were partially involved in the anti‐H. pylori activity. The human ornithine decarboxylase enzyme (ODC1), which shows increased activity in several cancer types, was non‐competitively inhibited (Vmax 2.7>0.8 Kcat s?1) by the essential oil of Z. limoncello as well as by 2‐undecanone and 2‐undecenal in accordance to in vitro kinetic studies. In silico calculations strongly suggest that the carbonyl group of these oxygenated hydrocarbons interacts with both Asn319 and Ala39 at the subunit A of ODC1. Considering that Ala39 is located close to Asn44, a crucial amino acid of the ODC's allosteric site, the non‐competitive inhibition of the enzyme by 2‐undecanone and 2‐undecenal is endorsed. Finally, the essential oil of Z. limoncello and its main volatiles showed a significant (p<0.01) and prolonged repellent effect against Aedes aegypti.  相似文献   

11.
The phytochemical profile and the antimicrobial effects of the volatile oil and the aqueous extract of Campanula portenschlagiana, a wild growing plant endemic to Croatia, were described. In the volatile oil, 53 compounds were identified by GC‐FID and GC/MS analyses. Diterpene alcohols constituted the major compound class with labda‐13(16),14‐dien‐8‐ol as the main compound. The aqueous extract was characterized by the total phenolic content. The antimicrobial potential of the volatile oil and the aqueous extract was evaluated against a diverse range of microorganisms comprising food‐spoilage and food‐borne pathogens. The volatile oil exhibited interesting and promising antimicrobial effects against the tested species, which were generally more pronounced against Gram‐negative bacteria. In addition, the inhibitory effect of this volatile oil was also evaluated against eleven extended‐spectrum β‐lactamase (ESBL)‐producing isolates. The results suggest that the C. portenschlagiana volatile oil might be used as antimicrobial agent against ESBL‐producing isolates and Gram‐negative bacteria.  相似文献   

12.
Phytochemicals, which are commonly found at different levels in many medicinal plants, are natural strong antioxidants used in traditional medicine. In this research, determination of differences of phytochemical compositions and biological properties were aimed as periodically (pre‐, full and post flowering) and daily (6 am, 1 pm and 8 pm) in Achillea gypsicola Hub.‐Mor . The volatile oils belonging to A. gypsicola were obtained by hydrodistillation and analyzed by gas chromatography‐flame ionization detection (GC‐FID) and gas chromatography‐mass spectrometry (GC/MS). The antimicrobial activities of the volatile oils were determined with disc diffusion method. The microdilution method was used to determine minimum inhibitory concentration (MIC). Total phenolic and flavonoid contents were determined by spectrophotometric methods and antioxidant capacities were evaluated by 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical, reducing power (RP) and metal chelating activity (MCA) assay. In addition, the phenolic acid and flavonoid compositions were evaluated by reversed phase‐high‐performance liquid chromatography (RP‐HPLC). This study presented a comprehensive report for the first time on evaluation of the phytochemical composition and the biological properties of A. gypsicola at different phenological stages. Thirty‐two compounds, containing the major component as camphor, 1,8‐cineole and borneol, were detected. Designated harvest time for the highest yield of volatile oils was found to be at full flowering stage‐1 pm. It has been observed that the volatile oil composition changes periodically and even daily. Also, in this research, menthol and menthone were found as the composition of volatile oil in Achillea species for the first time. Full flowering stage was found as the richest period in terms of phenolic acid and flavonoid compositions of A. gypsicola for the first time. The species examined in this research showed a high antioxidant and antimicrobial activity in comparison to other studies with Achillea species. The volatile oils exhibited high performances with range of inhibition zones (8.3–42.3 mm) and minimum inhibitory concentration values (2.25—144 μg/ml). Besides, a high correlation between antioxidant activity and phenolic content of A. gypsicola was found. These results suggest that A. gypsicola can be used as a safe source in the cosmetic, food and pharmaceutical industries.  相似文献   

13.
A screening of leaves of 25 taxa of angiosperms was made for their volatile toxicity against damping-off fungi. The volatile substances fromHyptis suaveolens andOcimum canum were toxic againstPythium aphanidermatum, P. debaryanum andRhizoctonia solani. The fungitoxicity of the leaves persisted for 15 d of storage. The volatile substances from the leaves ofO. canum were thermostable, while those fromH. suaveolens were thermolabile. The essential oils exhibited strong potency against the pathogens tested, non-phytotoxic nature to the host plants and superiority over commonly used synthetic fungicidesAgrosan G.N. andCaptan. The findings indicate the possibility to use these essential oils as potential natural fungicides in management of damping-off pathogens.  相似文献   

14.
The chemical composition of the essential oil (LEO) and its volatile fractions (V1–V10) collected during the hydrodistillation process every 15 min from the fresh leaves of I. viscosa (L.), growing in Tunisia, were analyzed by GC‐FID and GC/MS. Eighty‐two compounds, representing 90.9–99.4 % of the total samples, were identified. The crude essential oil (LEO) and its fractions (V1–V10) were characterized by the presence of a high amount of oxygenated sesquiterpenes (82.7–95.8 %). Isocostic acid ( 1 ) was found to be the most abundant component (37.4–83.9 %) and was isolated from the same essential oil over silica gel column chromatography and identified by spectroscopic methods (1H, 13C, DEPT 135 NMR and EI‐MS) and by comparison with literature data. Furthermore, the fresh leaves essential oil (LEO), its volatile fractions (V1–V10) as well as compound 1 were screened for their antibacterial, antityrosinase, anticholinesterase and anti‐5‐lipoxygenase activities. It was found that the isolated compound 1 exhibited an interesting antibacterial activity against Staphylococcus aureus ATCC 25923 (MIC=32 μg/mL) and Enterococcus faecalis ATCC 29212 (MIC=32 μg/mL) and the highest antityrosinase activity (IC50=13.82±0.87 μg/mL). Compound 1 was also found to be able to strongly inhibit 5‐lipoxygenase with an IC50 value of 59.21±0.85 μg/mL. The bioactivity and drug likeness scores of compound 1 were calculated using Molinspiration software and interpreted, and the structure‐activity relationship (SAR) was discussed with the help of molecular docking analysis.  相似文献   

15.
火棘花挥发油化学成分的GC-MS分析及抗氧化活性研究   总被引:1,自引:0,他引:1  
采用水蒸气蒸馏法提取火棘花挥发油,利用气相色谱—质谱联用技术(GC-MS)分析其化学成分。使用维生素C和BHT为阳性对照,以DPPH自由基、亚硝酸钠清除作用为指标评价挥发油的抗氧化活性。从挥发油中鉴定了77个化合物,占挥发油总量的83.77%,含有多种生物活性成分,以萜类及其含氧衍生物(50.31%)、烷烃(18.52%)、醛(5.54%)为主;挥发油对DPPH自由基、亚硝酸钠有明显的清除作用,清除率为50%时,其体积分别为43.51、79.48μL,样品量与清除率间呈量效关系;挥发油对DPPH自由基的清除效果略低于1 mg·mL-1维生素C,对亚硝酸钠的清除效果优于1 mg·mL-1的BHT。  相似文献   

16.
The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Zzanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 – 55.8%) and non‐terpenic oxygenated compounds (34.5 – 63.1%). The main components were (E)‐β‐ocimene (12.1 – 39%), octyl acetate (11.6 – 21.8%) and decanol (9.7 – 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.  相似文献   

17.
As a part of an investigation of natural antioxidants from Dalmatian aromatic plants, in this paper we report a study of the antioxidant activity related to the chemical composition of savory free volatile compounds. Twenty-one compounds were identified in the essential oil without fractionation, representing 97.4% of the total oil. The major compound was phenolic monoterpene thymol (45.2%). Other important compounds were monoterpenic hydrocarbons p-cymene (6.4%) and γ-terpinene (5.9%) and oxygen-containing compounds carvacrol methyl ether (5.8%), thymol methyl ether (5.1%), carvacrol (5.3%), geraniol (5.0%) and borneol (3.9%). The evaluation of antioxidant power was performed in vitro by the β-carotene bleaching and thiobarbituric acid (TBA) methods. As determined with both methods, the total savory essential oil as well as different fractions or pure constituents containing hydroxyl group exhibited relatively strong antioxidant effect. The hydrocarbons, when isolated as CH fraction, showed the poorest effectiveness in spite the fact that this fraction contained γ-terpinene, α-terpinene, p-cymene and terpinolene which previously were identified as potential antioxidants.  相似文献   

18.
The oil obtained by hydrodistillation from the aerial parts of Artemisia incana (L.) Druce from Turkey was analyzed by GC and GC/MS. Sixty‐three compounds were characterized, representing 97.2% of the total components detected, and camphor (19.0%), borneol (18.9%), 1,8‐cineole (14.5%), bornyl acetate (7.8%), camphene (4.9%), and α‐thujone (4.8%) were identified as predominant components. The essential oil was also tested for its antimicrobial activity against 44 different foodborne microorganisms, including 26 bacteria, 15 fungi, and 3 yeast species. The essential oil of A. incana exhibited considerable inhibitory effects against all bacteria, fungi, and yeast species tested. However, the oil showed lower inhibitory activity against the tested bacteria than the reference antibiotics.  相似文献   

19.
In the present study, the volatile composition of Ulva rigida (U. rigida) was elucidated by two different methods. As a result of the identification process of volatile components using the GC/MS-FID instrument, 31 compounds were identified by hydrodistillation (HD) method, and 15 compounds were identified by solid-phase microextraction (SPME) method, elucidating the structure of 99.86 % and 92.65 %, respectively. The most abundant compounds in the essential oil of U. rigida were n-hexadecanoic acid and pentadecanal, while the most abundant compound according to the SPME analysis was heptadecyne, a hydrocarbon compound. In the next step, hexane, dichloromethane, chloroform and methanol solvent extracts of U. rigida were prepared and the antimicrobial activities of the extracts and the essential oil obtained by hydro-distillation as well as the scolicidal activities of the solvent extracts were determined. The results of the antimicrobial activity test of the essential oil showed a high level of activity against Bacillus cereus ATCC 10876 and MRSA. The highest activity was found on the microorganism of Pseudomonas aeruginosa ATCC 9027 in chloroform and methanol extracts of U. rigida. Furthermore, viability detection was performed and the scolicidal effects of the extracts on protoscoleces were assessed. The values of lethal concentration doses (LD50, LD75 and LD90) were calculated using probit analysis.  相似文献   

20.
Volatile compounds with antifungal activity produced by edible mushrooms have potential as biological control agents to combat fungal diseases and reduce fungicide use in agriculture. Here we investigated the antifungal activity of volatile compounds produced by the edible mushroom Hypsizygus marmoreus (TUFC 11906) against eight phytopathogenic fungi. The results showed that volatile compounds from the mycelia and culture filtrates (CFs) of H. marmoreus had antifungal activity against some phytopathogenic fungi. Among them, the mycelial growth and conidial germination of Alternaria brassicicola were significantly inhibited by 60 and 100%, respectively. Moreover, the volatile compounds from CFs inhibited the lesion formation of A. brassicicola on detached cabbage leaves by 94%. The volatile compounds had higher antifungal activity against A. brassicicola than other fungi. With the removal of the volatile compounds from conidia of A. brassicicola, the conidia began to germinate, which indicates fungistatic activity of the compounds. The volatile compounds were isolated from the CFs of H. marmoreus, and the major volatile compound with antifungal activity was estimated to be 2‐methylpropanoic acid 2,2‐dimethyl‐1‐(2‐hydroxy‐1‐methylethyl)propyl ester. As the volatile compound produced by H. marmoreus is a product of an edible mushroom and has fungistatic activity against some phytopathogenic fungi, especially A. brassicicola, it may be possible to use the compounds as a novel safe agent for protecting crops in the field and during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号