首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty-four mutants of Alcaligenes eutrophus H 16 were isolated which grew poorly or not at all under autotrophic conditions. Four types were characterized with respect to their defects and their physiological properties. One mutant lacked both enzymes specific for autotrophic CO2 fixation, another one lacked both hydrogenases, and two mutants lacked either the membrane-bound or the soluble hydrogenase. Comparing the results of studies on these mutant types, the following conclusions were drawn: the lack of each hydrogenase enzyme could be partially compensated by the other one; the lack of membrane-bound hydrogenase did not affect autotrophic growth, whereas the lack of the soluble hydrogenase resulted in a decreased autotrophic growth rate. When pyruvate as well as hydrogen were supplied to the wild-type, the cell yield was higher than in the presence of pyruvate alone. Mutant experiments under these conditions indicated that either of both hydrogenases was able to add to the energy supply of the cell. Only the soluble hydrogenase was involved in the control of the rate of hydrogen oxidation by carbon dioxide; the mutant lacking this enzyme did not respond to the presence or absence of CO2. The suppression of growth on fructose by hydrogen could be mediated by either of both hydrogenases alone.  相似文献   

2.
The effect of molecular hydrogen on heterotrophic metabolism of the facultative chemolithoautotrophic bacterium Alcaligenes eutrophus strain H 16 was representatively investigated on histidine utilization. The presence of hydrogen in a histidine or urocanate-containing medium had two effects (i) growth of the cells was inhibited, and (ii) formation of histidase was repressed. Both effects were relieved by supplying the cells with exogenous carbon dioxide. Studies on mutants defective in chemolithoautotrophic metabolism revealed that growth inhibition by hydrogen was exclusively mediated by the catalytic function of the soluble hydrogenase. Mutants containing only particulate hydrogenase activity did not exhibit growth inhibition. Repression of histidase formation, however, was mediated by the catalytic activity of the soluble as well as the particulate hydrogenase. Unexpectedly, mutants defective in autotrophic carbon dioxide fixation but unaffected in hydrogen oxidation showed an inhibition of growth by hydrogen but no repression of histidase synthesis. Mutants which formed histidase constitutively were still sensitive to repression in the presence of hydrogen. The results indicate that repression of enzyme synthesis by hydrogen is dependent on the function of both, the hydrogen-oxidizing and the carbon dioxide-fixing system. It is concluded that the hydrogen effect is a transient regulatory mechanism and only relevant for unbalanced conditions of growth.  相似文献   

3.
The uptake of adenine, guanine, xanthine, hypoxanthine and uric acid by whole cells was studied, using spectrophotometric techniques, 14C-labelled compounds and metabolic inhibitors. Three different non-constitutive systems were shown to maintain the uptake of adenine and that of the pairs guanine/hypoxanthine and xanthine/uric acid. —Active transport of adenine was induced by adenine only, but passive uptake was also involved. Maximum K T values of 110–131 M were observed at the pH optimum of 8.0. —Guanine and hypoxanthine were translocated by one single mechanism as indicated by K T and K I values. This system was induced by both these substances but its affinity was 51/2-times higher for guanine than for hypoxanthine; it was noncompetitively stimulated by Mg2+. — A further system, induced by xanthine and uric acid, catalyzed the uptake of both these compounds. It exhibited two pH optima (at pH 6.6 and 7.9); inactivation by heat and stimulation or inhibition by several compounds indicated that two separate mechanisms might be involved in the uptake of xanthine and uric acid.  相似文献   

4.
With 0.5% substrate present in mineral medium, cells of Alcaligenes eutrophus H 16 were able to grow heterotrophically at the expense of guanine, hypoxanthine and xanthine, but not of adenine as sole sources of carbon and nitrogen. An increase in cell counts, however, was observed at lower adenine concentrations (0.1%). Similarly, adenine was only respired if present at low concentrations. Higher amounts of adenine were inhibitory to the utilization of adenine, guanine, hypoxanthine, xanthine, allantoin and glyoxylate, but not to that of fructose or glycerate. The adenine-dependent inhibition of adenine utilization was not overcome by the addition of thiamine, uridine or cytidine. The enzyme glyoxylate carboligase, usually formed in presence of metabolisable purines and of allantoin, was synthesized only at low adenine concentrations. Higher amounts were inhibitory even with allantoin present as additional substrate. According to these resutls, the utilization of purine derivatives and of allantoin as sources of carbon and energy is repressed by adenine in cells of A. eutrophus H 16.  相似文献   

5.
The uptake of the radioactive ammoniumanalogue 14C-methylammonium1 was measured in heterotrophically grown cells of Alcaligenes eutrophus H16 in order to study the mechanism of NH 4 + uptake. MA gradients of up to 200 were built up by a substrate-specific and energy-dependent system which showed a K m of 35–111 M and a V max of 0.4–1.8 nmol MA/min per mg protein. The involved carrier exhibited a higher affinity towards NH 4 + than towards CH3NH 3 + indicating that ammonium rather than MA was its natural substrate. Cold shock with hypotonic but not with hypertonic solutions caused the efflux of almost the entire accumulated MA. Osmotic shock did not affect the uptake reaction, suggesting that no periplasmic binding proteins were involved. Indirect observations indicate the membrane potential as driving force for MA uptake. High rates of uptake were observed in cells grown under nitrogen deficiency or with nitrate as nitrogen source. The uptake rate decreased during growth at high ammonium concentrations indicating that biosynthesis of nitrogenous compounds was supported by passive diffusion of NH3. The data suggest that the formation of the carrier is subject to nitrogen control.Non-standard abbreviations CCCP Carbonylcyanide-m-chlorphe-nylhydazone - MA methylammonium - pCMB para-chlormercuribenzoate  相似文献   

6.
Chromosomal mutants of Alcaligenes eutrophus unable to grow with molecular hydrogen as the energy source also failed to grow with nitrate as the terminal electron acceptor or as a nitrogen source. The mutants (Hno) (i) formed neither soluble nor particulate hydrogenase antigens, (ii) expressed only about 50% the wild type level of ribulosebisphosphate carboxylase activity, and (iii) transported nickel, an essential constituent of active hydrogenase, at a significantly lower rate than wild type cells. Moreover, the mutants grew very slowly with urea as nitrogen source and did not express urease. Growth on formamide was also affected and formamidase activity was induced to only a very low level. Growth of the Hno mutants on succinate, glutamate, fumarate, and malate was significantly slower than wild type, and a reduced rate of succinate incorporation into the mutant cells was demonstrated. The highly pleiotropic phenotype of Hno mutants is indicative of a chromosomal gene with a considerable physiological importance. It affected the expression of both chromosomal and megaplasmid encoded systems of energy, carbon, and nitrogen metabolism. Thus, the hno mutation restricts the metabolic versatility but does not affect the basic metabolic functions of the organism.  相似文献   

7.
Transport of nickel ions was studied in Alcaligenes eutrophus. Two transport systems for nickel ions exist to satisfy the nickel demand for the lithotrophic hydrogen metabolism. A major nickel transport activity exhibited an apparent affinity constant (K m) of 17 M nickel chloride. This activity was competitively inhibited by Mg2+, Mn2+, Zn2+, and Co2+. A minor nickel transport activity was determined in the presence of high (0.8 mM) magnesium. This activity was not inhibited by Zn2+ or Mn2+; its K m was determined to be 0.34 M nickel chloride. These kinetics suggested a second transport system in A. eutrophus. The membrane potential of A. eutrophus was decreased upon the addition of ammonium ions leading to a decreased nickel transport. This inhibition could be reversed by fructose or by hydrogen indicating an energy dependent nickel transport. Protonophores inhibited the nickel transport. However, inhibitors of ATP synthase like dicyclohexylcabodimide or venturicidin had little or no effect on nickel transport. These data indicated that the transport was coupled to the proton motive force.  相似文献   

8.
Tn5 was introduced into Alcaligenes eutrophus strain H1 by a suicide vector pSUP1011. Physical characterization of mutants obtained after Tn5 mutagenesis revealed a relatively high frequency of plasmid curing, or deletion of a 50 kb plasmid DNA segment. Results of Southern hybridization and chromosomal walking indicate that the same continuous stretch of plasmid DNA (designated as D region of plasmid) is deleted in four independent isolates. Moreover, the same deletion of plasmid DNA is also observed in a mitomycin C-generated mutant strain H1-4.Journal Paper No. J-12095 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2607, supported in part by a grant from the Iowa High Technology Council  相似文献   

9.
The soluble, NAD+-reducing hydrogenase in intact cells of Alcaligenes eutrophus was inactivated by oxygen when electron donors such as hydrogen or pyruvate were available. The sole presence of either oxygen or oxidizable substrates did not lead to inactivation of the enzyme. Inactivation occurred similarly under autotrophic growth conditions with hydrogen, oxygen and carbon dioxide. The inactivation followed first order reaction kinetics, and the half-life of the enzyme in cells exposed to a gas atmosphere of hydrogen and oxygen (8:2, v/v) at 30° C was 1.5 h. The process of inactivation did not require ATP-synthesis. There was no experimental evidence that the inactivation is a reversible process catalyzed by a regulatory protein. The possibility is discussed that the inactivation is due to superoxide radical anions (O 2 - ) produced by the hydrogenase itself.  相似文献   

10.
Molecular and functional properties of DNA topoisomerase I isolated from a hydrogen-oxidizing bacterium, Alcaligenes eutrophus H16, were investigated. Under native conditions the enzyme forms a monomer with a relative molar mass of 98.500. A rod-like shape of the molecule was derived from the calculated frictional coefficient. The isoelectric point of the enzyme was determined to be in the range of 7.6–8.0. The enzyme activity is strictly Mg2+ dependent with an optimum at 3 mM Mg2+. The pH optimum ranges within 7.5–9.0. A. eutrophus DNA topoisomerase I activity is inhibited by M13 ssDNA, high ionic strength, polyamines, heparin and by a number of intercalating drugs.Abbreviations DTT dithiothreitol - BSA bovine serum albumin - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - Tris tris(hydroxymethyl)aminomethane - PMSF phenylmethanesulfonyl fluoride - PAGE polyacrylamide gel electrophoresis  相似文献   

11.
Three nitrate reductase activities were detected in Alcaligenes eutrophus strain H16 by physiological and mutant analysis. The first (NAS) was subject to repression by ammonia and not affected by oxygen indicating a nitrate assimilatory function. The second (NAR) membrane-bound activity was only formed in the absence of oxygen and was insensitive to ammonia repression indicating a nitrate respiratory function. The third (NAP) activity of potential respiratory function occurred in the soluble fraction of cells grown to the stationary phase of growth. In contrast to NAR and NAS, expression of NAP did not require nitrate for induction and was independent of the rpoN gene product. Genes for the three reductases map at different loci. NAR and NAS are chromosomally encoded whereas NAP is a megaplasmid-borne activity in A. eutrophus.  相似文献   

12.
Some structural and functional properties of ribosomes from the hydrogen-oxidizing bacterium Alcaligenes eutrophus were studied in order to investigate the background of expression of genetic information at the translational level. Ribosomal proteins from 30S subunits of A. eutrophus H16 were separated by two-dimensional gel electrophoresis into 21 spots, those from 50S subunits into 32 spots. While electrophoretic mobilities of several ribosomal proteins differed markedly from those of Escherichia coli, proteins sharing common immunological determinants with E. coli ribosomal proteins S1 and L7/L12 were found in A. eutrophus. Shifting from heterotrophic to autotrophic conditions of growth had no influence on the ribosomal protein pattern. Ribosomes of A. eutrophus had similar requirements for Mg2+ and poly(U) concentrations for optimum polyphenylalanine synthesis as those of E. coli. Protein synthesis elongation factors Tu from A. eutrophus and E. coli were immunologically similar. Efficiency of the A. eutrophus polyphenylalanine-synthesizing system was comparable to that of an analogous system derived from E. coli. This suggests that A. eutrophus could be employed for efficient expression of recombinant DNA.  相似文献   

13.
2,4-Dichloro-cis,cis-muconate is established as ringcleavage product in the degradation of 3,5-dichlorocatechol by Alcaligenes eutrophus JMP 134. The formerly described isomerization of 2-chloro-trans- to 2-chlorocis-4-carboxymethylenebut-2-en-4-olide as an essential catabolic step could not be certified.  相似文献   

14.
A newly isolated aerobic hydrogen-oxidizing bacterium, Alcaligenes denitrificans strain 4a-2, differs from related autotrophic bacteria by containing only a single cytoplasmic, NAD-reducing hydrogenase, and by its high resistance to nickel ions, i.e. tolerance to 20 mM NiCl2. Strain 4a-2 harbors a single plasmid of about 250 kb. On helper-assisted mating of 4a-2 with Alcaligenes eutrophus strains H16,G29, and M85 nickelresistant transconjugants were selected; these did not contain the donor plasmid, however. All three transconjugants tolerated 3 to 10 mM NiCl2. The resistance was constitutively expressed. DNA/DNA hybridization showed homology with EcoRI-digested DNA of the wild type 4a-2 and transconjugants using a DNA probe containing nickel resistance genes of pMOL28. This indicated that the 4a-2 nickel resistance genes are located on the chromosome.  相似文献   

15.
Respiratory nitrite reductase (NIR) has been purified from the soluble extract of denitrifying cells of Alcaligenes eutrophus strain H16 to apparent electrophoretic homogeneity. The enzyme was induced under anoxic conditions in the presence of nitrite. Purified NIR showed typical features of a cytochrome cd 1-type nitrite reductase. It appeared to be a dimer of 60 kDa subunits, its activity was only weakly inhibited by the copper chelator diethyldithiocarbamate, and spectral analysis revealed absorption maxima which were characteristic for the presence of heme c and heme d 1. The isoelectric point of 8.6 was considerably higher than the pI determined for cd 1 nitrite reductases from pseudomonads. Eighteen amino acids at the N-terminus of the A. eutrophus NIR, obtained by protein sequencing, showed no significant homology to the N-terminal region of nitrite reductases from Pseudomonas stutzeri and Pseudomonas aeruginosa.  相似文献   

16.
A soluble flavohemoprotein (Fhp) was isolated to near homogeneity from heterotrophically grown cells of Alcaligenes eutrophus H16. Purified protein was used to raise polyclonal antibodies in rabbits. The anti-Fhp was employed to determine the content of Fhp in soluble extracts of wildtype and mutant strains of Alcaligenes. This analysis revealed that the formation of Fhp was strictly dependent on the presence of the individual megaplasmid, indigenous to A. eutrophus wild-type strains H16, H20 and N9A. Alcaligenes hydrogenophilus M50 did not contain Fhp; however, transfer of the A. eutrophus H16 specific plasmid pHG1 into this host, conferred Fhp-forming capacity. The fhp gene was isolated from a cosmid library of pHG1 DNA. A subcloned HindIII fragment of 3.27 kilobase pairs (kb) restored Fhp synthesis in plasmid-free mutants of A. eutrophus. Immunological studies showed that Fhp could also be expressed in the cloning organism Escherichia coli.  相似文献   

17.
2,4-Dichlorophenoxyacetate (2,4-D) in Alcaligenes eutrophus JMP134 (pJP4) is degraded via 2-chloromaleylacetate as an intermediate. The latter compound was found to be reduced by NADH in a maleylacetate reductase catalyzed reaction. Maleylacetate and chloride were formed as products of 2-chloromaleylacetate reduction, the former being funnelled into the 3-oxoadipate pathway by a second reductive step. There was no indication for an involvement of a pJP4-encoded enzyme in either the reduction or the dechlorination reaction.Abbreviations 2,4-D 2,4-dichlorophenoxyacetate  相似文献   

18.
Archives of Microbiology - Qualitative and quantitative determination of proteins of the soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC 1.12.1.2) from Alcaligenes eutrophus H16 was done by...  相似文献   

19.
In Alcaligenes eutrophus H16 a pleiotropic DNA-region is involved in formation of catalytically active hydrogenases. This region lies within the hydrogenase gene cluster of megaplasmid pHG1. Nucleotide sequence determination revealed five open reading frames with significant amino acid homology to the products of the hyp operon of Escherichia coli and other hydrogenase-related gene products of diverse organisms. Mutants of A. eutrophus H16 carrying Tn5 insertions in two genes (hypB and hypD) lacked catalytic activity of both soluble (SH) and membrane-bound (MBH) hydrogenase. Immunological analysis showed that the mutants contained SH-and MBH-specific antigen. Growing the cells in the presence of 63Ni2+ yielded significantly lower nickel accumulation rates of the mutant strains compared to the wild-type. Analysis of partially purified SH showed only traces of nickel in the mutant protein suggesting that the gene products of the pleiotropic region are involved in the supply and/or incorporation of nickel into the two hydrogenases of A. eutrophus.  相似文献   

20.
The nucleotide sequence of the rpoN gene, formerly designated hno, and flanking DNA regions of the aerobic hydrogen bacterium Alcaligenes eutrophus has been determined; rpoN codes for the RNA polymerase sigma factor 54 involved in nitrogen regulation and diverse physiological functions of gram-negative bacteria. In A. eutrophus hydrogen metabolism is under control of rpoN. The Tn5-Mob insertion in a previously isolated pleiotropic mutant was mapped within the rpoN gene. The derived amino acid sequence of the A. eutrophus RpoN protein shows extensive homology to the RpoN proteins of other organisms. Sequencing revealed four other open reading frames: one upstream (ORF280) and three downstream (ORF130, ORF99 and ORF > 54) of the rpoN gene. A similar arrangement of homologous ORFs is found in the rpoN regions of other bacteria and is indicative of a conserved gene cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号