首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous experimental studies in a standard Transwell culture system have shown Streptococcus suis ability to compromise barrier function of porcine choroid plexus epithelial cells (PCPEC). The development of an 'inverted' Transwell filter system of PCPEC enables us now for the first time to investigate bacterial invasion and translocation from the physiologically relevant basolateral (blood) to the apical (cerobrospinal fluid) side. Most importantly, we observed specific invasion and translocation of S. suis across the PCPEC exclusively from the basolateral side. During this process, bacterial viability and the presence of a capsule as well as cytoskeletal regulation of PCPEC seemed to play an important role. No loss of barrier function was observed. Bacterial translocation could be significantly inhibited by the phosphatidylinositol 3-kinase inhibitor LY294002, but not by its inactive analogue   Ly303511 or dexamethasone. Apotome imaging as well as electron microscopy revealed intracellular bacteria often in cell vacuoles. Thus, possibly regulated by the presence of a capsule, S. suis induces signals that depend on the lipid kinase phosphatidylinositol 3-kinase pathway, which paves the way for cellular uptake during the bacterial transcellular translocation process. Taken together, our data underline the relevance of the blood–cerebrospinal fluid barrier as a gate for bacterial entry into the central nervous system.  相似文献   

2.
The epithelial cells of the choroid plexus separate the central nervous system from the blood forming the blood-cerebrospinal fluid (CSF) barrier. The choroid plexus is the main source of CSF, whose composition is markedly changed during pathological disorders, for example regarding matrix metalloproteases (MMPs) and tissue inhibitors of matrix metalloproteases (TIMPs). In the present study, we analyzed the impact of the proinflammatory cytokine tumor necrosis factor- (TNF-) on the blood-CSF barrier using an in vitro model based on porcine choroid plexus epithelial cells (PCPEC). TNF- evoked distinct inflammatory processes as shown by mRNA upregulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. The cytokine caused a drastic decrease in transepithelial electrical resistance within several hours representing an enhanced permeability of PCPEC monolayers. In addition, the distribution of tight junction proteins was altered. Moreover, MMP activity in PCPEC supernatants was significantly increased by TNF-, presumably due to a diminished expression of TIMP-3 that was similarly observed. MMP-2, -3, and -9 as well as TIMP-1 and -2 were also analyzed and found to be differentially regulated by the cytokine. The TNF--induced breakdown of the blood-CSF barrier could partially be blocked by the MMP inhibitor GM-6001. Our results show a contribution of MMPs to the inflammatory breakdown of the blood-CSF barrier in vitro. Thus TNF- may mediate the binding of leukocytes to cellular adhesion molecules and the transmigration across the blood-CSF barrier. choroid plexus; matrix metalloproteases; tight junction; transepithelial electrical resistance; porcine choroid plexus epithelial cells; tumor necrosis factor-  相似文献   

3.
Once characterized as an immune privileged area, recent scientific advances have demonstrated that the central nervous system (CNS) is both immunologically active and a specialized site. The anatomical and cellular features of the brain barriers, the glia limitans, and other superficial coverings of the CNS endow the brain with specificity for immune cell entry and other macro- and micro-elements to the brain. Cellular trafficking via barriers comprised of tightly junctioned non-fenestrated endothelium or tightly regulated fenestrated epithelium results in different phenotypic and cellular changes in the brain, that is, inflammatory versus regulatory changes. Based on emerging evidence, we described the unique ability of the blood cerebrospinal fluid barrier (BCSFB) to recruit, skew, and suppress immune cells. Additionally, we sum up the current knowledge on both cellular and molecular mechanisms governed by the choroid plexus and the cerebrospinal fluid at the BCSFB for immunosurveillance, immunoprotection, and immunopathology.  相似文献   

4.
5.
The choroid plexus epithelium forms the interface between the blood and the CSF. In conjunction with the tight junctions restricting the paracellular pathway, polarized specific transport systems in the choroidal epithelium allow a fine regulation of CSF-borne biologically active mediators. The highly vascularized stroma delimited by the choroidal epithelium can be a reservoir for retrovirus-infected or activated immune cells. In this work, new insight in the implication of the blood-CSF barrier in neuroinfectious and inflammatory diseases is provided by using a differentiated cellular model of the choroidal epithelium, exposed to infected T lymphocytes. We demonstrate that T cells activated by a retroviral infection, but not non-infected cells, reduce the transporter-mediated CSF-to-blood efflux of organic anions, in particular that of the potent pro-inflammatory prostaglandin PGE2, via the release of soluble factors. A moderate alteration of the paracellular permeability also occurs. We identified the viral protein Tax, oxygenated free radicals, matrix-metalloproteinases and pro-inflammatory cytokines as active molecules released during the exposure of the epithelium to infected T cells. Among them, tumour necrosis factor and interleukin 1 are directly involved in the mechanism underlying the decrease in some choroidal organic anion efflux. Given the strong involvement of CSF-borne PGE2 in sickness behaviour syndrome, these data suggest that the blood-CSF barrier plays an important role in the pathophysiology of neuroinflammation and neuroinfection, via changes in the transport processes controlling the CSF biodisposition of PGE2.  相似文献   

6.
Manganese occupational and dietary overexposure has been shown to result in specific clinical central nervous system syndromes, which are similar to those observed in Parkinson disease. To date, modes of neurotoxic action of Mn are still to be elucidated but are thought to be strongly related to Mn accumulation in brain and oxidative stress. However, the pathway and the exact process of Mn uptake in the brain are yet not fully understood. Here, two well characterized primary porcine in vitro models of the blood-brain and the blood-cerebrospinal fluid (CSF) barrier were applied to assess the transfer of Mn in the brain while monitoring its effect on the barrier properties. Thus, for the first time effects of MnCl(2) on the integrity of these two barriers as well as Mn transfer across the respective barriers are compared in one study. The data reveal a stronger Mn sensitivity of the in vitro blood-CSF barrier compared with the blood-brain barrier. Very interestingly, the negative effects of Mn on the structural and functional properties of the highly Mn-sensitive blood-CSF barrier were partly reversible after incubation with calcium. In summary, both the observed stronger Mn sensitivity of the in vitro blood-CSF barrier and the observed site-directed, most probably active, Mn transport toward the brain facing compartment, reveal that, in contrast to the general assumption in literature, after oral Mn intake the blood-CSF barrier might be the major route for Mn into the brain.  相似文献   

7.
Blood plasma and cerebrospinal fluid (CSF) samples were collected from adult female rabbits (New Zealand White), newborn, and embryos at 18, 20, 24, and 28 days of gestation. Samples were analyzed for total protein using the Folin phenol reagent. During development, mean total protein of blood plasma rose sharply from 12.45 to 12.51 mg/ml at 18 to 20 days to 37.56 mg/ml at 28 days. Levels further increased to 54.06 mg/ml in the newborn and to 66.18 mg/ml in the adult. The protein concentration of cerebrospinal fluid was constant at 5.20 to 5.29 mg/ml between 18 and 20 days of gestation, but steadily decreased to 3.53 mg/ml at 28 days. By birth, the CSF protein concentration was further reduced to 2.08 mg/ml, and this level differed only slightly (P < 0.05) from CSF protein values determined for adults. These data indicate that the blood-cerebrospinal fluid barrier to proteins begins to function by 18 to 20 days of gestation, and the protein concentration of cerebrospinal fluid approaches the normal adult value soon after birth.  相似文献   

8.
Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB). Although human brain microvascular endothelial cells (HBMEC) constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP), which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens.  相似文献   

9.
Studies of development of hematoliquorian barrier in man represent significant difficulties, as it is not possible to employ the experimental-physiological approaches. In these conditions, the morphological analysis based on application of modern immunocytochemistry methods acquires the key role in fundamental physiological studies of onthogenesis of barrier central neurology systems. The current article presents an analytical review of publications and results of own authors research of structural organization of the hematoliquorian barrier in man during the prenatal ontogenesis.  相似文献   

10.
The Gram-positive zoonotic bacterium Streptococcus suis (S. suis) is responsible for a wide range of diseases including meningitis in pigs and humans. The blood-cerebrospinal fluid (CSF) barrier is constituted by the epithelial cells of the choroid plexus, which execute barrier function also after bacteria have entered the central nervous system (CNS). We show that the bacterial capsule, a major virulence factor, strongly attenuates adhesion of S. suis to the apical side of porcine choroid plexus epithelial cells (PCPEC). Oligonucleotide microarray analysis and quantitative PCR surprisingly demonstrated that adherent wild-type and capsule-deficient S. suis influenced expression of a pronounced similar pattern of genes in PCPEC. Investigation of purified capsular material provided no evidence for a significant role of the capsule. Enriched among the regulated genes were those involved in “inflammatory response”, “defense response” and “cytokine activity”. These comprised several cytokines and chemokines including the interleukins 6 and 8, which could be detected on protein level. We show that after infection with S. suis the choroid plexus contributes to the immune response by actively producing cytokines and chemokines. Other virulence factors than the bacterial capsule may be relevant in inducing a strong inflammatory response in the CNS during S. suis meningitis.  相似文献   

11.
Summary Four neurons in the brain of the migratory locust were immunohistologically identified with an anti-met-enkephalin antiserum. The perikarya of two of these cells are located in the center of each of the two groups of lateral protocerebral neurosecretory cells. The fibres coming from these perikarya terminate in numerous immunoreactive ramifications visible at the periphery of both tractus I to the corpora cardiaca, through which pass the neurosecretory products of the pars intercerebralis. The other two cell bodies are located at the bases of the two optic lobes; their fibres enter the posterior part of the protocerebrum and ramify around the root of the nervus corporis cardiaci II, another area through which neurosecretory products pass. The topographic distribution of these met-enkephalin arborizations suggests that these four neurons may act as neuromodulators of the acitivity of the major neurosecretory cells in the brain of this insect.  相似文献   

12.
Little is known about the cerebral distribution and clearance of guanidinoacetate (GAA), the accumulation of which induces convulsions. The purpose of the present study was to identify creatine transporter (CRT)-mediated GAA transport and to clarify its cerebral expression and role in GAA efflux transport at the blood-cerebrospinal fluid barrier (BCSFB). CRT mediated GAA transport with a K(m) value of 269 microM/412 microM which was approximately 10-fold greater than that of CRT for creatine. There was wide and distinct cerebral expression of CRT and localization of CRT on the brush-border membrane of choroid plexus epithelial cells. The in vivo elimination clearance of GAA from the CSF was 13-fold greater than that of d-mannitol reflecting bulk flow of the CSF. This process was partially inhibited by creatine. The characteristics of GAA uptake by isolated choroid plexus and an immortalized rat choroid plexus epithelial cell line (TR-CSFB cells) used as an in vitro model of BCSFB are partially consistent with those of CRT. These results suggest that CRT plays a role in the cerebral distribution of GAA and GAA uptake by the choroid plexus. However, in the presence of endogenous creatine in the CSF, CRT may make only a limited contribution to the GAA efflux transport at the BCSFB.  相似文献   

13.
Hydroxyurea is used in the treatment of HIV infection in combination with nucleoside analogues, 2'3'-didehydro-3'deoxythymidine (D4T), 2'3'-dideoxyinosine or abacavir. It is distributed into human CSF and is transported from the CSF to sub-ependymal brain sites, but its movement into the brain directly from the blood has not been studied. This study addressed this by a brain perfusion technique in anaesthetized guinea-pigs. The carotid arteries were perfused with an artificial plasma containing [14C]hydroxyurea (1.6 microm) and a vascular marker, [3H]mannitol (4.6 nm). Brain uptake of [14C]hydroxyurea (8.0 +/- 0.9%) was greater than [3H]mannitol (2.4 +/- 0.2%; 20-min perfusion, n = 8). CSF uptake of [14C]hydroxyurea (5.6 +/- 1.5%) was also greater than [3H]mannitol (0.9 +/- 0.3%; n = 4). Brain uptake of [14C]hydroxyurea was increased by 200 microm hydroxyurea, 90 microm D4T, 350 microm probenecid, 25 microm digoxin, but not by 120 microm hydroxyurea, 16.5-50 microm D4T, 90 microm 2'3'-dideoxyinosine or 90 microm abacavir. [14C]Hydroxyurea distribution to the CSF, choroid plexus and pituitary gland remained unaffected by all these drugs. The metabolic half-life of hydroxyurea was > 15 h in brain and plasma. Results indicate that intact hydroxyurea can cross the brain barriers, but is removed from the brain by probenecid- and digoxin-sensitive transport mechanisms at the blood-brain barrier, which are also affected by D4T. These sensitivities implicate an organic anion transporter (probably organic anion transporting polypeptide 2) and possibly p-glycoprotein in the brain distribution of hydroxyurea and D4T.  相似文献   

14.
15.
Summary The experiments described herein use an in vitro preparation of choroid plexus to demonstrate that it is a vasopressin-responsive organ by morphologic criteria. Choroid plexus from rats was incubated for one hour in graded concentrations of arginine vasopressin (AVP). Within physiologic range of molar concentration, incubation in vasopressin induced a decrease in basal and lateral spaces in choroid plexus epithelial cells as well as an increase in number of dark cells. The number of cells with basal spaces decreased significantly from 82.7±9.2 in control tissue to 19±18 in tissue incubated in 10-12 M AVP; similarly, the number with lateral cellular spaces decreased from 20±8.8 to 7.6±2.2 cells in 10-10 M AVP. Dark cells increased in number from 3.8±2.6 in control conditions to 49±4 with 10-9 M vasopressin. These data suggest important effects of arginine vasopressin in cerebrospinal fluid (CSF) on choroid plexus, compatible with enhanced fluid transport across choroid epithelial cells.  相似文献   

16.
Formation of amyloid plaques is the hallmark of Alzheimer’s disease. Our early studies show that lead (Pb) exposure in PDAPP transgenic mice increases β-amyloid (Aβ) levels in the cerebrospinal fluid (CSF) and hippocampus, leading to the formation of amyloid plaques in mouse brain. Aβ in the CSF is regulated by the blood-CSF barrier (BCB) in the choroid plexus. However, the questions as to whether and how Pb exposure affected the influx and efflux of Aβ in BCB remained unknown. This study was conducted to investigate whether Pb exposure altered the Aβ efflux in the choroid plexus from the CSF to blood, and how Pb may affect the expression and subcellular translocation of two major Aβ transporters, i.e., the receptor for advanced glycation end-products (RAGE) and the low density lipoprotein receptor protein-1 (LRP1) in the choroid plexus. Sprague-Dawley rats received daily oral gavage at doses of 0, 14 (low-dose), and 27 (high-dose) mg Pb/kg as Pb acetate, 5 d/wk, for 4 or 8 wks. At the end of Pb exposure, a solution containing Aβ40 (2.5 μg/mL) was infused to rat brain via a cannulated internal carotid artery. Subchronic Pb exposure at both dose levels significantly increased Aβ levels in the CSF and choroid plexus (p < 0.05) by ELISA. Confocal data showed that 4-wk Pb exposures prompted subcellular translocation of RAGE from the choroidal cytoplasm toward apical microvilli. Furthermore, it increased the RAGE expression in the choroid plexus by 34.1 % and 25.1 % over the controls (p < 0.05) in the low- and high- dose groups, respectfully. Subchronic Pb exposure did not significantly affect the expression of LRP1; yet the high-dose group showed LRP1 concentrated along the basal lamina. The data from the ventriculo-cisternal perfusion revealed a significantly decreased efflux of Aβ40 from the CSF to blood via the blood-CSF barrier. Incubation of freshly dissected plexus tissues with Pb in artificial CSF supported a Pb effect on increased RAGE expression. Taken together, these data suggest that Pb accumulation in the choroid plexus after subchronic exposure reduces the clearance of Aβ from the CSF to blood by the choroid plexus, which, in turn, leads to an increase of Aβ in the CSF. Interaction of Pb with RAGE and LRP1 in choroidal epithelial cells may contribute to the altered Aβ transport by the blood-CSF barrier in brain ventricles.  相似文献   

17.
Summary The development of the adrenergic sympathetic innervation of the rabbit choroid plexus system was studied prenatally and up to two months after birth by a combination of fluorescence histochemistry (formaldehyde and glyoxylic acid methods) and quantitative enzymatic determinations of noradrenaline. The first signs of adrenergic nerves are found in the plexus of the third ventricle within the first day after birth. Fluorescent fibres subsequently appear in the choroid plexuses of the lateral ventricles (five days post partum) and the fourth ventricle (two weeks post partum). During the following development nerve fibres grow along blood vessels to form a plexus located between small vessels and the overlying epithelium. The nerve plexus, with varicose axon terminals, is fully developed at three weeks post partum, and maturation is then established by an increase in the number of terminals within the network of axons. There is a good agreement between (a) the development of the fluorescent nerves and histochemically visible adrenergic innervation, and (b) the tissue level of noradrenaline in the various choroid plexuses. Against the background of available information on the development of the secretory functions in choroid plexus, it is concluded that possibilities for a sympathetic neurogenic influence on the formation of cerebrospinal fluid exist already a few weeks after birth.  相似文献   

18.
Zusammenfassung Der Einfluß von Puromycin auf die Inkorporierung von Leucin-3H wird an kultivierten Plexus chorioideus-Zellen 9 Tage alter Hühnerembryonen untersucht. Die Kulturen zeigen unter Einwirkung von Puromycin eine deutliche Hemmung der Aufnahme von Leucin-3H. Die Aufnahme der markierten Substanz ins Cytoplasma wird im Vergleich zu Kontrolluntersuchungen prozentual mehr gehemmt als die Aufnahme des Leucins in den Kern.Unmittelbar nach dem Zusatz von Puromycin zum Nährmedium treten in den kultivierten Plexus chorioideus-Zellen Ansammlungen von multivesicular bodies und z. T. auch zahlreiche Lysosomen auf. Beide Organellen verschwinden im Verlauf der weiteren Kultivierung wieder fast vollständig aus den Zellen.Eine neuerliche Zugabe von markiertem Leucin nach der Puromycingabe zeigt, daß die beobachteten Wirkungen reversibel sind und daß die Puromycinwirkung nicht länger anhält, als diese Substanz im Nährmedium vorhanden ist.
On the influence of puromycin on embryonic choroid plexus cells in vitro. An electronmicroscopic and histoautoradiographic study
Summary The influence of puromycin on the incorporation of leucin-3H into cells of choroid plexus of nine day old chicken embryos is studied.Puromycin causes a strong inhibition of the incorporation of leucin-3H into the cultures. Compared with controls, the inhibition of the uptake of the labelled substance is more pronounced in the cytoplasm than in the nucleus.Immediately after puromycin is added to the tissue culture medium an accumulation of multivesicular bodies and—to a certain degree—of lysosomes appears in the cells of the choroid plexus. Both organells disappear almost completely during the cultivation period.A second incubation with labelled leucin after puromycin shows that the observed effects are reversible and that puromycin acts only as long as it is present in the culture medium.The embryonic cells of choroid plexus develop normally even though treated with puromycin.
Die unreifen Plexus chorioideus-zellen entwickeln sich trotz der Puromycingaben normal.Das morphologische Differenzierungsergebnis wird nicht verändert.  相似文献   

19.
Concentration of alpha-2-macroglobulin, albumin, and chymotrypsin inhibitory capacity representing mainly alpha-1-proteinase inhibitor were estimated in cerebrospinal fluid in disorders of the central nervous system. While chymotrypsin inhibitory capacity was elevated in all cases with derangement of the blood-cerebrospinal fluid barrier, in 30% of the cases alpha-2-macroglobulin levels were in the normal range. The difference can be attributed to the much larger size of the latter. Better correlation between albumin concentration and chymotrypsin inhibitory capacity (r = 0.84) than between albumin and alpha-2-macroglobulin (r = 0.62) supports the view that the rate of entry of proteins from blood into cerebrospinal fluid is inversely related to their size.  相似文献   

20.
The authors measured the effects of exogenous melatonin treatment on the concentrations of total (T) and free (f) fractions of thyroxine (T4) and triiodothyronine (T3) in cerebrospinal fluid (CSF) and blood plasma as well as the expression of their binding/transporter protein, transthyretin (TTR), in the choroid plexus of ewes from May to August. Melatonin implantation in May and July mainly prevented the decrease in plasma for fT3 and TT3 exhibited in untreated group, and induced a limited decrease in TT4 in June. By contrast, melatonin implantation prevented the decrease in CSF fT3 observed in the untreated group. No effect of melatonin was found on the expression of TTR mRNA in the choroid plexus There were a correlations between blood fT4 and CSF TT4 concentrations in both control and melatonin treated group (r2−0.4; P < 0.01 vs. r2−0.14; P < 0.05), as well as between blood fT3 and CSF TT3 concentrations but only in the melatonin-treated group (r2−0.26; P < 0.02). We conclude that T3, the active form of the hormone within the brain, is regulated by melatonin independently of the peripheral changes within the blood. The lack of correlation between plasma fT3 and CSF TT3 in the control group suggests that an increase in local T3 conversion could contribute as an additional source of T3 in the CSF during the period of increasing day length. These data seem to confirm a local nature for recently discovered connections between the pineal melatonin signal and thyroid-dependent seasonal biology in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号