首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Brain hypothermia treatment is used as a neuroprotectant to decompress the elevated intracranial pressure (ICP) in acute neuropatients. However, a quantitative relationship between decompression and brain hypothermia is still unclear, this makes medical treatment difficult and ineffective. The objective of this paper is to develop a general mathematical model integrating hemodynamics and biothermal dynamics to enable a quantitative prediction of transient responses of elevated ICP to ambient cooling temperature. The model consists of a lumped-parameter compartmental representation of the body, and is based on two mechanisms of temperature dependence encountered in hypothermia, i.e. the van't Hoff's effect of metabolism and the Arrhenius' effect of capillary filtration. Model parameters are taken from the literature. The model is verified by comparing the simulation results to population-averaged data and clinical evidence of brain hypothermia treatment. It is possible to assign special model inputs to mimic clinical maneuvers, and to adjust model parameters to simulate pathophysiological states of intracranial hypertension. Characteristics of elevated ICP are quantitatively estimated by using linear approximation of step response with respect to ambient cooling temperature. Gain of about 4.9 mmHg degrees C(-1), dead time of about 1.0 h and a time constant of about 9.8h are estimated for the hypothermic decompression. Based on the estimated characteristics, a feedback control of elevated ICP is introduced in a simulated intracranial hypertension of vasogenic brain edema. Simulation results suggest the possibility of an automatic control of the elevated ICP in brain hypothermia treatment.  相似文献   

2.
Kazanskaia GM 《Tsitologiia》2006,48(12):991-999
A comparative analysis of the endothelial ultrastructure of myocardium microvessels affected by various methods of artificial hypothermia was carried out. Tissue samples were harvested in children with a congenital ventricular septum defect after cooling the whole body under the conditions of hypothermic artificial circulation and perfusionless (immersion) hypothermia. It was found out that the shifts in population composition of endothelial cells, as well as the changes in the ultrastructure of organelles participating in endocellular syntheses and transendothelial transfer of macromolecules depended upon the rate body cooling. Under perfusionless hypothermia and of moderately low cooling rate, morphological signs of inhibition of endothelial cells metabolism were observed alongside with quantitative reduction of their micropinocytic transport indicators. Under hypothermic artificial circulation these reactions tended to lag behind due to the high cooling rate that initiates a heterogenic response of various endothelial processes to the changes of body temperature.  相似文献   

3.
Intracerebroventricular (ICV) administration of kyotorphin (L-Tyr-L-Arg) and cyclo (N-methyl-L-Tyr-L-Arg), its analog, produced significant dose-dependent hypothermic responses in mice at an ambient temperature of 24°C. The hypothermic action of kyotorphin was much greater than that of Met-enkephalin (Met-ENK) but less than that of cyclo NMTA. This action was slightly but not significantly reversed by intraperitoneally administered naloxone (8 mg/kg), an opioid receptor antagonist. Met-ENK utilized as a control peptide in this study also produced a dose-dependent hypothermia which was slightly antagonized by naloxone (8 mg/kg, IP). Thyrotropin releasing hormone (TRH) injected ICV produced hyperthermia dose-dependently. The hypothermia induced by kyotorphin, its cyclic analog and Met-ENK was prevented by a small dose of TRH (0.18 μg=0.5 nmol/animal) which by itself had little effect on body temperature. A TRH neuronal system in the brain may explain the mechanism of kyotorphin-induced hypothermia. However, there was little evidence of involvement of opioid receptors. The present study demonstrates a potent action of kyotorphin and its analog on thermoregulation.  相似文献   

4.
Many birds could expend substantially less energy at night by using hypothermia, but generally do not. This suggests that the potential savings are offset by costs; one of these costs is presumed to be the risk of predation at night. If this assumption is correct, a bird will face one of two tradeoffs: (1) it can avoid the cost of hypothermia by gaining fat to decrease the risk of starvation, but this increases energetic costs of fat maintenance and risk of diurnal predation, or (2) it can maintain lower fat reserves and use hypothermia at night, but this option increases the risk of nocturnal predation. We used a dynamic model to investigate these trade-offs and how the use of nocturnal hypothermia changes energy management tactics in food-caching birds. Our model predicted that: (i) optimal daily routines of fat reserves, feeding rate, food caching, and cache retrieval should be similar in hypothermic and non-hypothermic birds; (ii) low fat reserves, small cache size, low ambient temperature, and high variability in foraging success favor increased use of hypothermia; (iii) the effect of ambient temperature on the use of hypothermia is especially important at higher levels of variance in foraging success; (iv) hypothermic birds are predicted to have lower mass at dusk than non-hypothermic individuals while their morning mass should be more similar. Many of these predictions have been supported by empirical data. Also, survival rates are predicted to be higher for birds using hypothermia, especially in the most severe environmental conditions. This is the first attempt to evaluate the role of cache maintenance and variance in foraging success in the use of hypothermia. This is also the first discussion of the relationship between behavior hypothermia and diurnal patterns of energy management.  相似文献   

5.
It has been demonstrated that chicken TRPV1 (transient receptor potential vanilloid of subtype-1) is insensitive to capsaicin (CAP), and therefore, a chicken model is suitable to analyze the CAP-sensitive TRPV1-independent pathway. We elucidated here the possible involvement of the pathway in hypothermia induced by bacterial endotoxin (lipopolysaccharide, LPS) in chickens. Chicks were pretreated with CAP (10 mg/kg, iv) at 1, 2 and 3 days of age to desensitize them towards the CAP-sensitive pathway. An intravenous injection of LPS in 4-day-old chicks caused progressive hypothermia, ending with collapse and 78% mortality within 12 h after injection. The CAP pretreatment rescued the LPS-induced endotoxin shock and hypothermia in chicks. LPS-induced iNOS expression as well as NO production in liver and lung was suppressed by CAP pretreatment. CAP pretreatment also attenuated hypothermia due to exposure of chicks to cold ambient temperature. These findings suggest that a CAP-sensitive TRPV1-independent pathway may be involved in pathophysiological hypothermic reactions through the mediation of NO in chickens.  相似文献   

6.
Because leucokinins stimulate diuresis in some insects, we wished to identify the neurosecretory cells in Manduca sexta that might be a source of leucokinin-like neurohormones. Immunostaining was done at various stages of development, using an antiserum to leucokinin IV. Bilateral pairs of neurosecretory cells in abdominal ganglia 3–7 of larvae and adults are immunoreactive; these cells project via the ipsilateral ventral nerves to the neurohemal transverse nerves. The immunoreactivity and size of these lateral cells greatly increases in the pharate adult, and this change appears to be related to a period of intensive diuresis occurring a few days before adult eclosion. Relationships of these neurons to cells that are immunoreactive to a M. sexta diuretic hormone were also investigated. Diuretic hormone and leucokinin immunoreactivity are co-localized in the lateral neurosecretory cells and their neurohemal projections. A median pair of leucokinin-immunoreactive, and a lateral pair of diuretic hormone-immunoreactive neurons in the larval terminal abdominal ganglion project to neurohemal release sites within the cryptonephridium. The immunoreactivity of these cells is lost as the cryptonephridium is eliminated during metamorphosis. This loss appears to be related to the change from the larval to adult pattern of diuresis.  相似文献   

7.
Therapeutic hypothermia is a promising new strategy for neuroprotection. However, the methods for safe and effective hypothermia induction in conscious patients are lacking. The current study explored the Transient Receptor Potential Vanilloid 3 (TRPV3) channel activation by the agonist carvacrol as a potential hypothermic strategy. It was found that carvacrol lowers core temperature after intraperitoneal and intravenous administration in mice and rats. However, the hypothermic effect at safe doses was modest, while higher intravenous doses of carvacrol induced a pronounced drop in blood pressure and substantial toxicity. Experiments on the mechanism of the hypothermic effect in mice revealed that it was associated with a decrease in whole-body heat generation, but not with a change in cold-seeking behaviors. In addition, the hypothermic effect was lost at cold ambient temperature. Our findings suggest that although TRPV3 agonism induces hypothermia in rodents, it may have a limited potential as a novel pharmacological method for induction of hypothermia in conscious patients due to suboptimal effectiveness and high toxicity.  相似文献   

8.
One of the major causes of mortality in patients with acute liver failure (ALF) is the development of hepatic encephalopathy (HE) which is associated with increased intracranial pressure (ICP). High ammonia levels, increased cerebral blood flow and increased inflammatory response have been identified as major contributors to the development of HE and the related brain swelling. The general principles of the management of patients with ALF are straightforward. They include identifying the insult causing hepatic injury, providing organ systems support to optimize the patient's physical condition, anticipation and prevention of development of complications. Increasing insights into the pathophysiological mechanisms of ALF are contributing to better therapies. For instance, the evident role of cerebral hyperemia in the pathogenesis of increased ICP has led to a re-evaluation of established therapies such as hyperventilation, N-acetylcysteine, thiopentone sodium and propofol. The role of systemic inflammatory response in the pathogenesis of increased ICP has also gained importance supporting the concept that antibiotics given prophylactically reduce the risk of developing sepsis during the course of illness. Moderate hypothermia has also been established as a therapy able to reduce ICP in patients with uncontrolled intracranial hypertension and to prevent increases in ICP during orthopic liver transplantation. Ornithine phenylacetate, a new drug in the treatment of liver failure, and liver replacement therapies are still being investigated both experimentally and clinically. Despite many advances in the understanding of the pathophysiological basis and the management of intracranial hypertension in ALF, more clinical trials should be conducted to determine the best therapeutic management for this difficult clinical event.  相似文献   

9.
The effects of alcohol on core cooling rates (rectal and tympanic), skin temperatures, and metabolic rate were determined for 10 subjects rendered hypothermic by immersion for 45 min in 10 degrees C water. Experiments were duplicated with and without a 20-min period of exercise at the beginning of cold water immersion. Measurements were continued during rewarming in a hot bath. With blood alcohol concentrations averaging 82 mg 100 mL-1, core cooling rates and changes in skin temperatures were insignificantly different from controls, even if the exercise period was imposed. Alcohol reduced shivering metabolic rate by an overall mean of 13%, insufficient to affect cooling rate. Alcohol had no effect on metabolic rate during exercise. During rewarming by hot bath, the amount of 'afterdrop' and rate of increase in core temperature were unaffected by alcohol. It was concluded that alcohol in a moderate dosage does not influence the rate of progress into hypothermia or subsequent, efficient rewarming. This emphasizes that the high incidence of alcohol involvement in water-related fatalities is due to alcohol potentiation of accidents rather than any direct effects on cold water survival, although very high doses of alcohol leading to unconsciousness would increase rate of progress into hypothermia.  相似文献   

10.
In acute liver failure (ALF) patients that have raised increased intracranial pressure (ICP), mortality remains unacceptably high. There has been an explosion in the knowledge about the pathophysiological basis of raised ICP but treatment modalities are limited. Current therapy is aimed at reducing the circulating ammonia levels and attempts to reduce brain swelling which are only moderately effective. More recently, cerebral hyperemia has been suggested as being of major importance in the pathogenesis of increased ICP providing a new look at interventions such as hyperventilation, N-acetylcysteine, thiopentone sodium and propofol. More recently studies have focused upon the role of systemic inflammatory response in the pathogenesis of increased ICP and support the use of antibiotics prophylactically. The application of moderate hypothermia to treat uncontrolled intracranial hypertension seems promising and its exact place will be decided in a large trial being planned in USA and Europe. Early data from studies in an animal model suggests that albumin dialysis is a promising new tool to treat intracranial hypertension in patients with ALF. The recent advance in our understanding of the pathophysiological basis of intracranial hypertension has provided the platform for the discovery of new treatments.  相似文献   

11.
The present study sought to quantitate the levels of plasma catecholamines [norepinephrine (NE), epinephrine (E), and dopamine (DA)] during induction and rewarming from hypothermia. Male rats (317 +/- 8 g) were made hypothermic by exposure to 0.9% halothane at -10 to -15 degrees C while blood pressure (carotid artery), heart rate, and colonic temperature (Tc) were monitored. Anesthesia was discontinued when Tc reached 28 degrees C. Tc continued to fall but was held at 20-20.5 degrees C for 30 min. Rewarming was then initiated by raising ambient temperature to 22 degrees C. Arterial blood samples were taken 1) before cooling, 2) just before rewarming, 3) when Tc reached 22 degrees C during rewarming, and 4) when Tc reached 27 degrees C during rewarming. Plasma was assayed radioenzymatically for catecholamines using both phenylethanolamine-N-methyltransferase and catechol-O-methyltransferase procedures, and hypothermic induction resulted in significant increases in NE, E, and DA above control levels (P less than 0.01). With rewarming to Tc = 22 degrees C, all catecholamines increased above the level observed during hypothermia (P less than 0.01), and NE and DA increased still further (P less than 0.01) when Tc reached 27 degrees C. The levels of plasma catecholamines observed during hypothermia and during the rewarming phase indicate a role of the sympathoadrenal medullary system in the metabolic adjustments associated with hypothermia and recovery. During rewarming, the levels of E and NE attained exceed those at which both substances may be expected to act as circulating hormones.  相似文献   

12.
Body temperature drops dramatically during hibernation, but the heart retains the ability to contract and is resistant to induction of arrhythmia. Although adaptive changes in the heart prior to hibernation may be involved in the cold-resistant property, it remains unclear whether these changes are sufficient for maintaining cardiac pulsatility under an extreme hypothermic condition. We forcibly induced hypothermia in Syrian hamsters by pentobarbital anesthesia combined with cooling of the animals. This allows reproduction of a hypothermic condition in the absence of possible hibernation-specific reactions. Unlike hypothermia in natural hibernation, the forced induction of hypothermia caused atrioventricular block. Furthermore, J-waves, which are typically observed during hypothermia in nonhibernators, were recorded on an ECG. The origin of the J-wave seemed to be related to irreversible injury of the myocardium, because J-waves remained after recovery of body temperature. An abnormal ECG was also found when hypothermia was induced in hamsters that were well adapted to a cold and darkened environment or hamsters that had already experienced hibernation. These results suggest that acclimatization prior to hibernation does not have a crucial effect at least on acquisition of cardiac resistance to low temperature. In contrast, an abnormal ECG was not observed in the case of hypothermia induced by central administration of an adenosine A1-receptor agonist and subsequent cooling, confirming the importance of the adenosine system for inducing hibernation. Our results suggest that some specific mechanisms, which may be driven by a central adenosine system, operate for maintaining the proper cardiac pulsatility under extreme hypothermia.  相似文献   

13.
A daily infusion of 500-1,000 ml of 50% glucose containing 100-120 units of soluble insulin and 100-120 mEq of potassium chloride per litre was given to six patients suffering from hyponatraemia and congestive cardiac failure resistant to digoxin and diuretic therapy. In two patients there was no response, but four showed a striking improvement with a sodium and water diuresis, a rise in plasma sodium level, and in two cases a reversion from atrial fibrillation to sinus rhythm. It is suggested that insulin, glucose, and potassium given by the intravenous route in adequate dosage forms a useful adjunct to the management of severe congestive heart failure.  相似文献   

14.
Arrhythmias developing in isolated Langendorff-perfused heart following the cooling of the perfusion solution from +37 to +3 degrees C were studied in rats and winter hibernating ground squirrels Citellus undulatus with application of no drugs. In rats, hypothermia significantly increased the probability of ventricular arrhythmias (from 22 +/- 6 % at 37 degrees C to 56 +/- 14 % at 17 degrees C). Excitation failure was observed in the rat hearts below 10 +/- 1 degrees C. The appearance of arrhythmias was closely correlated with a decrease in the wavelength which strongly suggests a reentrant mechanism of the hypothermic arrhythmias. In contrast, ground squirrels showed insensibility of the wavelength to cooling and were resistant to arrhythmias during hypothermia.  相似文献   

15.
Hypothermia is used in the clinic for protection of organs such as the brain against ischemic injury during aortic/complex congenital cardiac surgery or post-resuscitation encephalopathy. The principal mechanism of hypothermic protection is suppression of metabolism, however, the pleiotropic effects of cooling are incompletely understood. Here, we used a rat model system to evaluate metabolic changes induced by deep hypothermia. The hypothermia-induced changes were identified using fluorescence-based two-dimensional (2-D) difference gel electrophoresis (DIGE) and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry. Rats were randomly assigned to a normothermic control group (37°C, n=6) or hypothermia group (23°C, n=6) that received surface cooling for 3h. Liver tissue was excised for assessment. Functional profiling of differently expressed proteins was performed as an enrichment analysis of Gene Ontology (GO) terms and pathways. We found that the livers of anesthetized rats with deep hypothermia showed significant downregulation of proteins in the endoplasmic reticulum and mitochondria, and of those involved in ATP binding, amino acid metabolism and urea cycle, response to oxidative stress, anti-apoptosis, negative regulation of apoptosis. The changes in the proteome of the hypothermic rats showed similarities, except with regard to endoplasmic reticulum chaperones, to those identified elsewhere in mammals undergoing hibernation.  相似文献   

16.
DDT1 MF-2 hamster ductus deferens cells are resistant to hypothermia due to serotonin secretion from secretory vesicles and subsequent cystathionine beta synthase (CBS) mediated formation of H2S. We investigated whether the mechanism promoting resistance to hypothermia may be translationally induced in cells vulnerable to cold storage. Thus, VMAT-1 (vesicular monoamino transferase) and TPH-1 (tryptophan hydroxylase) were co-transfected in rat aortic smooth muscle cells (SMAC) and kidney tissue to create a serotonin-vesicular phenotype (named VTSMAC and VTkidney, respectively). Effects on hypothermic damage were assessed. VTSMAC showed a vesicular phenotype and an 8-fold increase in serotonin content and 5-fold increase in its release upon cooling. Cooled VTSMAC produced up to 10 fold higher concentrations of H2S, and were protected from hypothermia, as shown by a 50% reduction of caspase 3/7 activity and 4 times higher survival compared to SMAC. Hypothermic resistance was abolished by the inhibition of CBS activity or blockade of serotonin re-uptake. In VTkidney slices, expression of CBS was 3 fold increased in cold preserved kidney tissue, with two-fold increase in H2S concentration. While cooling induced substantial damage to empty vector transfected kidney as shown by caspase 3/7 activity and loss of FABP1, VTkidney was fully protected and comparable to non-cooled control. Thus, transfection of VMAT-1 and TPH-1 induced vesicular storage of serotonin which is triggered release upon cooling and has protective effects against hypothermia. The vesicular serotonergic phenotype protects against hypothermic damage through re-uptake of serotonin inducing CBS mediated H2S production both in cells and kidney slices.  相似文献   

17.
Experimental hypothermia and natural hibernation are two forms of hypometabolism with recognized physiological changes, including depression of endocrine and metabolic functions. To better understand functional changes, helox (i.e., helium and oxygen (80:20) mixtures) and low ambient temperatures have been used to induce hypothermia in hamsters and rats. Both clinical and biological survival, i.e., survival without recovery and survival with recovery from hypothermia, respectively, are related to depth and length of hypothermia. In the rat, body temperatures of 15 degrees C for periods greater than 6-10 h greatly restrict biological survival. The role of glucocorticoids in enhancing thermogenic capacity of rats was assessed using triamcinolone [correction of triamcinalone] acetonide. In the hamster, treatment with cortisone acetate prolonged both clinical and biological survival. Hypothermic hamsters continue utilizing circulating glucose until they become hypoglycemic and die. Hypothermic rats do not utilize glucose and respond with a significant hypoinsulinema. The role of endocrines in the regulation of carbohydrate homeostasis and metabolism differs in hibernation and hypothermia. Glucocorticoids influence the hypothermic response in both species, specifically by prolonging induction of hypothermia in rats and by prolonging survival in hypothermic hamsters.  相似文献   

18.
Shlomo Yehuda  Abba J. Kastin   《Peptides》1980,1(3):243-248
Administration of several doses of MIF-I or alpha-MSH did not modify colonic temperature or the level of motor activity of rats in ambient temperatures of 4 degree or 20 degrees C. However, the thermoregulatory but not motor effects of the interaction between MIF-I or alpha-MSH with d-amphetamine were dependent upon ambient temperature. At 4 degree C, 1.0 mg/kg of both peptides enhanced the d-amphetamine-induced hypothermia, but at 20 degrees C both peptides blocked the hyperthermic effects of d-amphetamine. The hypothermic effect of chlorpromazine (CPZ) at 4 degree C and 20 degrees C was blocked by 1.0 mg/kg MIF-I but not by 1.0 mg/kg alpha-MSH. No linear dose response relationships between various doses of MIF-I or alpha-MSH and thermal responses were found. Administration of melanin or the use of hypophysectomized rats did not alter the significant interactions observed after peripheral injections.  相似文献   

19.
Effect of some selective agonists and antagonists of cholinergic M receptor subtypes on rectal temperature was investigated in rats at an ambient temperature of 25 degrees +/- 2 degrees C. Centrally administered acetylcholine (ACh) induced transient hypothermia, whereas the muscarinic M1 receptor agonists, arecholine (ip) and McN-A-343 (McN) (icv), induced sustained and dose-related hypothermia. However, the nonspecific muscarinic receptor agonist, oxotremorine, and physostigmine, induced hypothermia at a lower dose and hyperthermia, accompanied by tremors, at higher doses. The muscarinic M2 receptor agonist, carbachol (icv) also produced a dose-related dual effect, hyperthermia and hypothermia being induced by the lower and higher doses, respectively. The M1 receptor antagonists, scopolamine (ip) and pirenzepine (icv), induced hyperthermia, whereas the M2 receptor antagonists, gallamine (icv) and AF-DX 116 (AFDX) (ip), produced hypothermia. The hypothermic effects of ACh. arecholine, McN, physostigmine, oxotremorine and carbachol were attenuated by scopolamine and pirenzepine. However, although scopolamine also inhibited the hyperthermic and tremorogenic effects of the higher dose of oxotremorine, it had a synergistic effect with the hyperthermia-inducing higher dose of physostigmine. AFDX attenuated the hyperthermic effect of the lower dose of carbachol, indicating that it was M2 receptor-mediated. Hemicholinium, an ACh synthesis inhibitor, had a transient hypothermic effect followed by slight hyperthermia. However, it markedly antagonized the hypothermic effects of gallamine and AFDX, indicating that their effects were dependent upon the availability of neuronal ACh. The results indicate that cholinergic hypothermia is a function of central muscarinic M1 receptors, with the M2 receptors serving as automodulators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
目的:观察5-羟色胺1A (5-HT1A)受体阻断剂p-MPPI对乙醇引起大鼠低体温和行为性体温调节反应的影响。方法:用无线遥控测温技术记录成年雄性SD大鼠体核温度和活动的变化。用无线遥测温度梯度仪监测大鼠体核温度和行为性体温调节活动,将大鼠置于15℃~40℃的温度梯度箱内,并允许动物自由选择箱内温度,观察乙醇(3 g/kg)引起低体温和行为性体温调节的反应以及5-HT1A受体阻断剂p-MPPI (1 mg/kg)对其效应的影响。结果:①乙醇能引起大鼠快速的体温降低反应,同时动物选择较低的环境温度。②5-HT1A受体阻断剂p-MPPI能明显阻断乙醇引起的低体温和行为性体温调节变化。结论:①乙醇能使体温调定点降低,因为乙醇引起低体温时,大鼠选择较冷环境温度区;②5-HT可能参与乙醇引起低体温与行为性体温调节活动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号