首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogen content in the brain, liver and skeletal muscles of rats bearing ascite Zajdela hepatoma (AZH) and solid 27 hepatoma (27-H) has been studied. Serum glucose levels directly correlated with liver glycogen reserves. In the terminal stage of tumor growth depletion of liver glycogen was observed, while the stores of muscle glycogen did not diminish. Within 1-4 days (AZH) and 15-30 days (27-H) after implantation the stores even exceeded those of control healthy rats. In the terminal stage, in spite of hypoglycaemia development, the content of brain glycogen was significantly elevated in both groups of animals.  相似文献   

2.
Tumor necrosis factor alpha (TNFalpha) was found to be significantly increased in skeletal muscles and retroperitoneal fat of obese insulin-resistant Koletsky rats as compared to control Wistar rats. This increase was accompanied by a depression of insulin receptor protein tyrosine kinase (PTK) activity. Neither the insulin-binding capacity nor insulin receptor affinity were related to this TNFalpha increase in these tissues. In the liver, no significant changes of TNFalpha content and only a lowering of insulin-binding capacity were found. It is concluded that an increased TNFalpha content in muscles and fat (but not in the liver) contributes to insulin resistance by lowering insulin receptor protein tyrosine kinase activity, while other insulin receptor characteristics (insulin-binding capacity and affinity of insulin receptors to the hormone) do not seem to be influenced by this factor.  相似文献   

3.
Alterations in the high and low affinity insulin receptor concentrations in developing rat liver were investigated. The number of high affinity receptors in partially purified plasma membranes from fetal rats increased from Days 19 through 22 of gestation, with no further increase in binding during the postnatal period. Fetuses of diabetic rats had approximately three times as many high affinity insulin receptors as age-matched fetuses of normal rats; however, by 1 day after birth the receptor number decreased to the normal level. Neither the number of low affinity receptors nor the affinity of insulin binding to high or low affinity receptors changed during development or between offspring of normal and diabetic rats. These changes in the number of high affinity hepatic insulin receptors from prenatal animals did not correlate with the concentration of plasma insulin. When suckling pups were rendered diabetic the changes in the number of high affinity insulin receptors correlated with alterations in plasma insulin concentrations. The number of high affinity sites/microgram DNA in hepatocytes from Day 18 fetal rats was not altered when cells were cultured for 48 h in medium containing 0, 250, or 5000 μU/ml of added insulin. When cultured hepatocytes derived from 1-day-old and adult rats were maintained in medium with added insulin concentrations of 250 or 5000 μU/ml the number of high affinity receptors/microgram DNA decreased as compared to the number of high affinity receptors in hepatocytes cultured in medium with no added insulin. This decrease in receptor number was accompanied by an increase in the affinity of insulin binding to its high affinity receptors. The data show that (i) only the high affinity insulin receptor number increases in rat liver during the prenatal period, (ii) fetuses of diabetic rats show a greater increase in high affinity receptors than do fetuses of normal animals, and (iii) the phenomenon of down regulation for high affinity insulin receptors is not observed in fetal rat liver, but is acquired in the immediate postnatal period.  相似文献   

4.
Serum lipoproteins were measured by ultracentrifugal means in rats bearing hepatomas of different degrees of malignancy (Morris hepatomas 16, 5123TC and 7777) to determine the effect of these hepatomas on serum lipoprotein levels. Serum lipoprotein patterns were altered, especially in rats bearing hepatomas 16 and 7777, which had elevated high-density lipoproteins. (They were not elevated in serum of rats bearing hepatoma 5123TC). This increase in high-density lipoproteins seems to be specific for chemically induced hepatomas since HDL2 is usually decreased in humans and animals with types of cancer not involving the liver. It appears that hepatomas can synthesize lipoproteins, and the serum levels of the host rats are altered depending on the hepatoma. Different biochemistries appear to be associated with each hepatoma. Cholesterol and fatty acid levels of unfractionated serum and of isolated lipoproteins also indicate abnormal lipid/lipoprotein metabolism associated with these hepatomas.  相似文献   

5.
The mechanism underlying the increased insulin binding found in hepatic plasma membranes from streptozotocin-diabetic rats was evaluated by measuring insulin binding to intact and Triton X-100-soluble extracts of plasma membranes prepared from the livers of control rats and rats administered streptozotocin (85 mg/kg). In addition, to assess whether the cellular content of hepatic insulin receptors is also increased in diabetic animals, we measured insulin-binding activity in intact and soluble extracts of total hepatic cellular membrane preparations (100,000 X g cellular pellets). The data indicate that while insulin binding is increased (52 +/- 3%) in intact hepatic plasma membranes from diabetic rats compared to control rats, there is no comparable increase in insulin binding in intact total cellular membranes or in Triton X-100-soluble extracts of plasma membranes or total cellular membranes. We therefore conclude that the enhanced insulin binding found in the livers of diabetic rats is the result of a local redistribution of plasma membrane insulin receptors from cryptic to exposed sites. Finally, the data suggest the presence of a negative modulator of insulin-binding affinity in intact plasma and total cellular membranes.  相似文献   

6.
Regulation of lipoprotein receptors on rat hepatomas in vivo   总被引:1,自引:0,他引:1  
It has been shown previously that the rat hepatoma no. 7288C grown in vivo or in vitro expresses fewer receptors which recognize chylomicron remnants than does normal rat liver, and it was suggested that this may contribute to the deletion of dietary cholesterol-induced regulation of cholesterol synthesis in hepatomas (Barnard, G., Erickson, S. and Cooper, A. (1984) J. Clin. Invest. 74, 173-184). To investigate this further, Buffalo rats bearing hepatomas (HTC no. 7288C) were made hypercholesterolemic by feeding an atherogenic diet and hypocholesterolemic by ethinyl estradiol injections. Under all circumstances, tumor membranes had fewer receptors than liver membranes as measured by specific binding of [125I]chylomicron remnants. Ethinyl estradiol treatment increased the number of lipoprotein receptors 1.7-fold in liver membranes and 1.2-1.6-fold in tumor membranes, but hypercholesterolemia did not produce any significant changes in remnant binding to either liver or hepatoma membranes. Feeding an atherogenic diet induced a 2.4-fold increase in total cholesterol content in the liver, primarily as cholesterol ester; however, there was no change in total, free or ester cholesterol in the hepatomas. Acyl coenzyme A:cholesterol acyltransferase activity was low in this hepatoma line and neither treatment significantly affected its activity. One explanation for the lack of effect of the atherogenic diet on hepatoma cholesterol metabolism in addition to the decreased number of lipoprotein receptors might be the failure of access of lipoproteins to the tumor cell. To assess this, radioiodinated apo E-rich lipoproteins of various sizes were injected intravenously into rats with hepatomas. Their disappearance from the circulation was followed, and the uptake of each lipoprotein into a variety of tissues was determined. Chylomicron remnants were the most avidly removed particles. VLDLH, IDLH and HDLC were removed more slowly and less completely. None of the lipoproteins accumulated substantially in the tumors suggesting a limited access to the hepatoma tissue. Thus, in addition to the observed reduction in lipoprotein receptor number, limited lipoprotein access to the hepatoma tissue may be a significant factor in contributing to the apparent lack of feedback regulation of cholesterol synthesis by hepatoma tissue in vivo.  相似文献   

7.
Hepatomas tend to have a decreased glucose-6-phosphatase activity. We have observed phenotypic stability for this change in Morris hepatomas transplanted in rats. To determine if this decrease is selective for translocase functions or the hydrolase activity associated with glucose-6-phosphatase, we have compared activities in liver and hepatomas with glucose-6-phosphate or mannose-6-phosphate as substrates and with intact or histone-disrupted microsomes. In five out of seven subcutaneously transplanted rat hepatoma lines, the microsomal mannose-6-phosphatase activity was lower than in preparations from liver of normal or tumor-bearing rats. With liver microsomes and with most hepatoma microsomes, preincubation with calf thymus histones caused a greater increase in mannose-6-phosphatase than in glucose-6-phosphatase activity. In studies with liver and hepatoma microsomes there were similar increases in mannose-6-phosphatase activity with total calf thymus histones and arginine-rich histones. A smaller increase was seen with lysine-rich histones. The effect of polylysine was similar to the action of lysine-rich histones. There was only a small effect with protamine at the same concentration (1 mg/ml). Rat liver or hepatoma H1 histones gave only about half the activation seen with core nucleosomal histones. Our data suggested that microsomes of rat hepatomas tend to have decreased translocase and hydrolase functions of glucose-6-phosphatase relative to activities in untransformed liver. (Mol Cell Biochem122: 17–24, 1993)  相似文献   

8.
Lactogen binding and prolactin content were measured in hepatic subcellular fractions from tumor-bearing rats (TBR; MtT/F4, MtT/W5, MtT/W10) with elevated prolactin and growth hormone levels and from control animals. Specific binding of 125I-oPRL to Golgi fractions from tumor-bearing animals was 2.5 to 7 fold greater than that from controls. Binding to plasmalemma was 6-fold greater in tumor-bearing rats. The specific binding of 125I-labelled bGH and insulin showed less marked differences between TBR and controls. Subcellular fractions were extracted with HCl to determine hormonal content. The content of prolactin and growth hormone in Golgi fractions from TBR was at least 20-fold that in fractions from controls. Rat prolactin extracted from Golgi heavy elements was 50% as effective as native material in binding to lactogen receptors as judged by radioreceptor assay. These studies demonstrate that the chronic elevation of prolactin was associated with an increase of receptors not only in the intracellular compartment but on the cell surface as well. Furthermore, they demonstrate that native prolactin is internalized and accumulated in rat liver Golgi fractions.  相似文献   

9.
The activities of ornithine decarboxylase (ODC) and thymidine kinase (TK) and the rates of DNA synthesis were determined in hepatomas and livers of rats bearing Morris hepatoma 5123-C or 7800 and entrained to a schedule of 12 hours of light followed by 12 hours of darkness, with food (60% protein) available only during the first 2 hours of the dark period. ODC activity in hepatoma 5123-C displayed a diurnal oscillation, increasing 2-fold during the feeding period and then rapidly decaying to 20% of the peak level. The livers of rats bearing hepatoma 5123-C exhibited a similar oscillation of ODC activity, with peak values lower than in the hepatomas but higher than in the livers of control (non-tumor bearing) animals. TK activity and the rate of DNA synthesis in hepatoma 5123-C were low during most of the dark period but increased rapidly towards the end of the dark period. DNA synthesis reached a plateau at the dark-light interface and then rapidly declined, but TK activity remained high during the light period. Similar studies on hepatoma 7800 established that ODC activity in this hepatoma did not oscillate but remained at low levels throughout the day. Similarly, host livers of rats bearing hepatoma 7800 did not exhibit the diurnal oscillation of ODC activity characteristic of liver from control rats, but showed a slow increase in activity followed by a plateau and a slow decline to base-line levels. DNA synthesis in hepatoma 7800 was constant throughout the day, whereas TK activity may have increased during the dark period. In the livers of control rats and animals bearing hepatoma 5123-C or 7800, TK activity and rate of DNA synthesis were at low levels at all times studied and appeared not to oscillate.  相似文献   

10.
A study was made of the action of various concentrations of ATP on insulin ability to bind to the receptors of the liver and muscle membranes in control and streptozocin-induced diabetes animals. Specific binding of 125I-insulin to the receptors of the liver and muscle membranes was shown to rise in animals with streptozocin-induced diabetes as compared to control. This effect was most pronounced in the muscle membranes. Preincubation of the membranes with ATP did not affect insulin binding to the liver and muscle receptors of control animals. However, hormone binding to the liver receptors of diabetic rats was drastically suppressed by ATP (10(-3) M). Less ATP concentrations (10(12) M) produced an additional inhibitory action which was not marked. ATP led to decreased insulin binding to the muscle receptors of diabetic rats only at extremely low concentrations (10(-12) M). The data obtained may be of importance for regulation of membrane phosphorylation in the states characteristic of insulin resistance.  相似文献   

11.
J S Sebolt  G Weber 《Life sciences》1984,34(3):301-306
The concentration of L-glutamine was determined in freeze-clamped samples of normal liver of adult male fed rats (5.7-6.1 mumol/g) and in transplantable hepatomas of vastly different proliferative rates. The L-glutamine concentration in the slowly growing hepatomas was in the range of the normal liver and it decreased in relation to the increase of hepatoma growth rate, in the most rapidly growing tumors amounting to 12% of that of normal liver. In 24-hour regenerating liver, the glutamine content was slightly reduced (by 17%). In normal rat organs of high cell renewal, such as testis, intestinal mucosa, spleen, and thymus, the L-glutamine concentration was 18 to 46% of that of normal rat liver. The L-glutamine content was similar in rat brain and liver, but it was 1.6-fold higher in the heart, and low in the blood. Glutamine synthetase (EC 6.3. 1.3) activity in normal adult liver of ACI/N strain rats was 1,000 nmol per hr per mg protein; the activity increased in the very slowly growing hepatoma 20, but decreased markedly in all the other hepatomas. Thus, glutamine synthetase activity was essentially transformation-linked. The negative correlation of glutamine content with growth rate in transplanted hepatomas appears to be more closely linked with the activities of enzymes that utilize glutamine. The low L-glutamine concentration in the rapidly growing hepatomas provides a potential marker for anti-glutamine chemotherapy selectively targeted against the glutamine-utilizing enzymes.  相似文献   

12.
Plasma membranes (PM) were isolated from island-forming types of rat ascites hepatoma (AH 130, AH 602, and AH 7974) and from their free-cell sublines (AH 130FN and AH 7974F), and were characterized in terms of electron-microscopic morphology, marker enzyme activities, and lipid contents. The results were compared with those of the PM isolated in a similar way from newborn, regenerating, and adult livers. The marker enzyme activities, such as Na+, K+-insensitive Mg2+-ATPase [EC 3.6.1.3] (Mg2+-ATPase) and 5'-nucleotidase [EC 3.1.3.5], as well as the phospholipid composition of the PM isolated from hepatomas by Wallach's nitrogen gas cavitation method were similar to those obtained with the PM isolated by a modification of Emmelot's method, although the former method gave a much lower yield in terms of protein than the latter. Based on the modified Emmelot method, sufficiently pure PM preparations could be obtained from the hepatomas in the form of large membrane sheets without any contamination by other identifiable components, as determined with an electron microscope, and with high specific activities of the marker enzymes, such as Na+, K+-sensitive ATPase [EC 3.6.1.3] (Na+, K+ -ATPase), Mg2+ -ATPase, and 5'-nucleotidase. As for the characteristics of the hepatoma PM, lower specific activity of 5'-nucleotidase and higher fatty aldehyde molar percentages in total phospholipids were noted in all the PM from the hepatomas in comparison with normal liver PM of various origins. The PM from the hepatomas showed an increased amount of cholesterol (mumole per mg protein), whereas actively growing newborn and regenerating livers gave rather lower amounts in comparison with that of normal adult liver.  相似文献   

13.
Regulation of hepatic growth hormone receptors by insulin.   总被引:10,自引:0,他引:10  
Induction of diabetes in the rat with streptozotocin caused a decrease in the specific binding of human growth hormone to liver receptors. The decrease was due to a loss of binding sites, with no change in the affinity constant for growth hormone (5.6 × 109M?1). A highly significant correlation was seen between serum insulin levels and hepatic growth hormone binding. Specific insulin binding to hepatic receptors was increased in diabetes, with a highly significant negative correlation between serum insulin levels and insulin binding. The loss of growth hormone receptors was reversed by treating diabetic rats with insulin. Since hormones which bind to “lactogenic” binding sites in the liver are reported to regulate somatomedin levels, the insulin dependence of human growth hormone receptors might account for the decrease in serum somatomedin in diabetes.  相似文献   

14.
The occurrence of insulin receptors was investigated in freshly dissociated brain-cortical cells from mouse embryos. By analogy with classical insulin-binding cell types, binding of 125I-insulin to foetal brain-cortical cells was time- and pH-dependent, only partially reversible, and competed for by unlabelled insulin and closely related peptides. Desalanine-desasparagine-insulin, pig proinsulin, hagfish insulin and turkey insulin were respectively 2%, 4%, 2% and 200% as potent as bovine insulin in inhibiting 125I-insulin binding to brain-cortical cells, which corresponds to their relative biological potencies in classical insulin-target cells; no competition was observed with glucagon and nerve growth factor, even at high concentrations. Scatchard analysis of competitive-binding data resulted in curvilinear plots with a high-affinity binding of Ka = 3.6 X 10(8) M-1. Insulin binding to foetal brain-cortical cells differed, however, in two distinct aspects from that to classical insulin-binding cell types. Firstly, dilution of 125I-insulin-bound cells in the presence of unlabelled insulin did not accelerate dissociation of the labelled hormone. Secondly, exposure of brain-cortical cells to insulin before the binding assay enhanced insulin binding, suggesting up-regulation of insulin receptors in response to insulin. In conclusion, foetal-mouse brain-cortical cells bear specific binding sites for insulin. Their insulin receptor shows a marked specificity and affinity for insulin, but differs in at least two properties from most classical insulin receptors. These differences in hormone-receptor interaction could reflect structural differences between insulin receptors on embryonic and differentiated cells.  相似文献   

15.
Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, and exhibits many of the same physiological and pharmacological activities as curcumin and, in some systems, may exert greater antioxidant activity than curcumin. Using circulating erythrocytes as the cellular mode, the insulin-binding effect of THC and curcumin was investigated. Streptozotocin (STZ)-nicotinamide-induced male Wistar rats were used as the experimental models. THC (80 mg/kg body weight) was administered orally for 45 days. The effect of THC on blood glucose, plasma insulin and insulin binding to its receptor on the cell membrane of erythrocytes were studied. Mean specific binding of insulin was significantly lowered in diabetic rats with a decrease in plasma insulin. This was due to a significant decrease in mean insulin receptors. Erythrocytes from diabetic rats showed a decreased ability for insulin-receptor binding when compared with THC-treated diabetic rats. Scatchard analysis demonstrated that the decrease in insulin binding was accounted for by a decrease in insulin receptor sites per cell, with erythrocytes of diabetic rats having less insulin receptor sites per cell than THC-treated rats. High affinity (K d1), low affinity (K d2) and kinetic analyses revealed an increase in the average receptor affinity of erythrocytes from THC-treated rats compared with those of diabetic rats. These results suggest that acute alteration of the insulin receptor on the membranes of erythrocytes occurred in diabetic rats. Treatment with THC significantly improved specific insulin binding to the receptors, with receptor numbers and affinity binding reaching near-normal levels. Our study suggests the mechanism by which THC increases the number of total cellular insulin binding sites resulting in a significant increase in plasma insulin. The effect of THC is more prominent than that of curcumin.  相似文献   

16.
Our previous studies indicated that amino acid residues 240-250 in the cysteine-rich region of the human insulin receptor alpha-subunit constitute a site in which insulin binds (Yip, C. C., Hsu, H., Patel, R. G., Hawley, D. M., Maddux, B. A., and Goldfine, I. D. (1988) Biochem. Biophys. Res. Commun. 157, 321-329). We have now constructed a human insulin receptor mutant in which 3 residues in this sequence were altered (Thr-Cys-Pro-Pro-Pro-Tyr-Tyr-His-Phe-Gln-Asp to Thr-Cys-Pro-Arg-Arg-Tyr-Tyr-Asp-Phe-Gln-Asp) and have expressed this mutant in rat hepatoma (HTC) cells. When compared with cells transfected with normal insulin receptors, cells transfected with mutant receptors had an increase in insulin-binding affinity and a decrease in the dissociation of bound 125I-insulin. Studies using solubilized receptors also demonstrated that mutant receptors had a higher binding affinity than normal receptors. In contrast, cells transfected with either mutant or normal receptors bound monoclonal antibodies against the receptor alpha-subunit with equal affinity. When receptor tyrosine kinase activity and alpha-aminoisobutyric acid uptake were measured, cells transfected with mutant insulin receptors were more sensitive to insulin than cells transfected with normal receptors. These findings lend further support therefore to the hypothesis that amino acid sequence 240-250 of the human insulin receptor alpha-subunit constitutes one site that interacts with insulin, and they indicate that mutations in this site can influence insulin receptor binding and transmembrane signaling.  相似文献   

17.
Total and polyadenylylated RNA have been isolated from two Morris hepatomas with different degree of differentiation and from the normal liver of the corresponding tumor-bearing inbred rats. The analysis of mRNA has been performed by Northern hybridization using 32P-dA-tailed synthetic deoxyoligonucleotide probes, 33-mer for Mn superoxide dismutase (SOD) and 36-mer for CuZnSOD, derived from the nucleotide sequences of the rat enzyme cDNAs. Two distinct mRNA species (about 850 and 1080 nucleotides) have been identified by using the MnSOD probe. CuZnSOD is translated from a single message of about 720 nucleotides. The total MnSOD mRNA concentration is decreased by 43% and 57% in the hepatomas 9618A (highly differentiated) and 3924A (poorly differentiated), respectively. CuZnSOD mRNA is practically unchanged in the hepatoma 9618A whereas it is reduced by 80% in the hepatoma 3924A. Comparison of the enzyme activities and mRNA levels indicates a good correlation only for hepatoma 3924A, suggesting that the changes of both SODs are regulated pretranslationally. From the data obtained it is also inferred that the mRNA levels of MnSOD respond more readily than those of CuZnSOD to changes in differentiation.  相似文献   

18.
The cells of the IM-9 human lymphocyte-derived line contain a sub-population of insulin-binding sites whose immunological and hormone-binding characteristics closely resemble those of the atypical insulin-binding sites of human placenta. These binding sites, which have moderately high affinity for multiplication-stimulating activity [MSA, the rat homologue of insulin-like growth factor (IGF) II] and IGF-I, are identified on IM-9 cells by 125I-MSA binding. They account for approximately 30% of the total insulin-receptor population, and do not react with a monoclonal antibody to the type I IGF receptor (alpha IR-3). The relative concentrations of unlabelled insulin, MSA and IGF-I required to displace 50% of 125I-MSA from these binding sites (1:4.7:29 respectively) are maintained for cells, particulate membranes, Triton-solubilized membranes precipitated either by poly(ethylene glycol) or a polyclonal antibody (B-10) to the insulin receptor, and receptors purified by insulin affinity chromatography. Because the atypical insulin/MSA-binding sites outnumber the type I IGF receptors in IM-9 cells by approximately 10-fold, they also compete with the latter receptors for 125I-IGF-I binding. Thus 125I-IGF-I binding to IM-9 cells is inhibited by moderately low concentrations of insulin (relative potency ratios for insulin compared with IGF-I are approx. 1/14 to 1/4) and is partially displaced (65-80%) by alpha IR-3. When type I IGF receptors are blocked by alpha IR-3 or removed by B-10 immunoprecipitation or insulin affinity chromatography, the hormone-displacement patterns for 125I-IGF-I binding resemble those of the atypical insulin/MSA-binding sites.  相似文献   

19.
In mice liver plasma membranes (PM), the binding affinity of receptors for [125I] human growth hormone (hGH) was dependent on the association time: after 18 hours, a high affinity receptor form with KA = 6.8 X 10(9) M-1 accumulated and, as compared to after 1 hour, an increase up to 88%, in a slow dissociating component was observed. Preincubation of PM with concanavalin A (Con A) or other lectins from Lens culinaris (LCA), Ricinus communis (RCA I), Wheat germ agglutinin (WGA) specifically inhibited the binding of hGH to receptors by 54, 28, 50 and 25%, respectively. Furthermore, PM pretreatment with Con A concomitantly increased the rate of dissociation of the hormone-receptor (H-R) complex to 92 or 65% after association for 1 or 18 hours. These Con A-induced alterations resulted from a reduced fraction of the slow dissociable component together with an increased rate constant. The treatment of PM with Con A subsequent to incubation with the hormone did not decrease hormone binding but caused the conversion of the class of hGH receptors exhibiting fast dissociation kinetics towards a form exhibiting slow ones. These data strongly suggest a role for glycoproteins of the N-acetyllactosaminic type in the affinity state of liver membrane hGH receptors.  相似文献   

20.
Antibodies against rat liver chromatin interact with homologous chromatin as well as with chromatin of Zajdela ascite hepatoma and solid hepatoma 27, but not with the nuclear matrix isolated from these hepatomas. Rat liver chromatin regions hypersensitive to DNAase I and endogenous Mg2+-dependent nuclease are enriched with immunogenic nonhistone proteins. Using antiliver IgG pretreated with chromatin of Zajdela ascite hepatoma and solid hepatoma 27, it was shown that liver chromatin antigens that are not detectable in hepatoma cells are localized in hypersensitive to nucleases chromatin regions buy not in actively transcribed ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号