首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human immunodeficiency virus type 1 Vpr is a virion-associated, regulatory protein that is required for efficient viral replication in monocytes/macrophages. The protein is believed to act in conjunction with the Gag matrix protein to allow import of the viral preintegration complex in nondividing cells. In cells, Vpr localizes to the nucleus. Recently, we showed that Vpr prevents the activation of p34cdc2-cyclin B. This results in arrest of Vpr-expressing cells in the G2/M phase of the cell cycle. Here, we use a panel of expression vectors encoding Vpr molecules mutated in the amino-terminal alpha-helical region, the central hydrophobic region, or the carboxy-terminal basic region to define the functional domains of the protein. The results showed cell cycle arrest was largely controlled by the carboxy-terminal basic domain of the protein. In contrast, the amino-terminal alpha-helical region of Vpr was required for nuclear localization and packaging into virions. The carboxy terminus appeared to be unnecessary for nuclear localization. In the alpha-helical region, mutation of Ala-30 to Pro resulted in a protein that localized to the cytoplasm. Surprisingly, fusion of Vpr to luciferase resulted in a molecule that failed to localize to the nucleus. In addition, we show that simian immunodeficiency virus Vpr, but not Vpx, induces G2 arrest. We speculate that Vpr has two sites for interaction with cellular factors: one in the alpha-helical region that specifies nuclear localization and one in the carboxy-terminal domain that is required for Cdc2 inhibition.  相似文献   

2.
3.
The human immunodeficiency virus type 1 (HIV-1) vpr gene encodes a protein which induces arrest of cells in the G2 phase of the cell cycle. Here, we demonstrate that following the arrest of cells in G2, Vpr induces apoptosis in human fibroblasts, T cells, and primary peripheral blood lymphocytes. Analysis of various mutations in the vpr gene revealed that the extent of Vpr-induced G2 arrest correlated with the levels of apoptosis. However, the alleviation of Vpr-induced G2 arrest by treatment with the drug pentoxifylline did not abrogate apoptosis. Together these studies indicate that induction of G2 arrest, but not necessarily continued arrest in G2, was required for Vpr-induced apoptosis to occur. Finally, Vpr-induced G2 arrest has previously been correlated with inactivation of the Cdc2 kinase. Some models of apoptosis have demonstrated a requirement for active Cdc2 kinase for apoptosis to occur. Here we show that accumulation of the hypophosphorylated or active form of the Cdc2 kinase is not required for Vpr-induced apoptosis. These studies indicate that Vpr is capable of inducing apoptosis, and we propose that both the initial arrest of cells and subsequent apoptosis may contribute to CD4 cell depletion in HIV-1 disease.  相似文献   

4.
The human immunodeficiency virus type 1 (HIV-1) accessory protein viral protein R (Vpr) is a major determinant for virus-induced G2/M cell cycle arrest and cytopathicity. Vpr is thought to perform these functions through the interaction with partner proteins. The NMR structure of Vpr revealed solvent exposed hydrophobic amino acids along helices 1 and 3 of Vpr, which could be putative protein binding domains. We previously showed that the hydrophobic patch along helix-3 was important for G2/M blockade and cytopathicity. Mutations of the exposed hydrophobic residues along helix-1 were found to reduce Vpr-induced cell cycle arrest and cell death as well. The levels of toxicity during virion delivery of Vpr correlated with G2/M arrest. Thus, the exposed hydrophobic amino acids in the amino-terminal helix-1 are important for the cell cycle arrest and cytopathicity functions of Vpr.  相似文献   

5.
Biological effects of HIV-1 Vpr on CD4(+) cells were studied by an infection system. High-titered HIV-1 stocks pseudotyped with vesicular stomatitis virus G protein were prepared and used to inoculate into CD4(+ )T cells at high multiplicity of infection. Both cell- and virion-associated Vpr were demonstrated to arrest the cell cycle at the G2/M phase, and to induce cell apoptosis. Of note, morphologically apoptotic cells were shown to be arrested at the G2/M stage. No appreciable effect of Vpr on the anti-Fas antibody-mediated apoptosis was observed in this system.  相似文献   

6.
The human immunodeficiency virus type 1 Vpr protein is both packaged into virions and efficiently localized to the nucleus. In this report, we show that a significant fraction of Vpr also accumulates in the cytoplasm of virus-producing cells. Although Vpr shuttles between the nucleus and the cytoplasm, studies with an export-deficient Vpr mutant reveal that nuclear export is not required for virion incorporation.  相似文献   

7.
The Vpr gene product of human immunodeficiency virus type 1 is a virion-associated protein that is important for efficient viral replication in nondividing cells such as macrophages. At the cellular level, Vpr is primarily localized in the nucleus when expressed in the absence of other viral proteins. Incorporation of Vpr into viral particles requires a determinant within the p6 domain of the Gag precursor polyprotein Pr55gag. In the present study, we have used site-directed mutagenesis to identify a domain(s) of Vpr involved in virion incorporation and nuclear localization. Truncations of the carboxyl (C)-terminal domain, rich in basic residues, resulted in a less stable Vpr protein and in the impairment of both virion incorporation and nuclear localization. However, introduction of individual substitution mutations in this region did not impair Vpr nuclear localization and virion incorporation, suggesting that this region is necessary for the stability and/or optimal protein conformation relevant to these Vpr functions. In contrast, the substitution mutations within the amino (N)-terminal region of Vpr that is predicted to adopt an alpha-helical structure (extending from amino acids 16 to 34) impaired both virion incorporation and nuclear localization, suggesting that this structure may play a pivotal role in modulating both of these biological properties. These results are in agreement with a recent study showing that the introduction of proline residues in this predicted alpha-helical region abolished Vpr virion incorporation, presumably by disrupting this secondary structure (S. Mahalingam, S. A. Khan, R. Murali, M. A. Jabbar, C. E. Monken, R. G. Collman, and A. Srinivasan, Proc. Natl. Acad. Sci. USA 92:3794-3798, 1995). Interestingly, our results show that two Vpr mutants harboring single amino acid substitutions (L to F at position 23 [L23F] and A30F) on the hydrophobic face of the predicted helix coded for relatively stable proteins that retained their ability to translocate to the nucleus but exhibited dramatic reduction in Vpr incorporation, suggesting that this hydrophobic face might mediate protein-protein interactions required for Vpr virion incorporation but not nuclear localization. Furthermore, a single mutation (E25K) located on the hydrophilic face of this predicted alpha-helical structure affected not only virion incorporation but also nuclear localization of Vpr. The differential impairment of Vpr nuclear localization and virion incorporation by mutations in the predicted N-terminal alpha-helical region suggests that this region of Vpr plays a role in both of these biological functions of Vpr.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) is capable of infecting nondividing cells such as macrophages because the viral preintegration complex is able to actively traverse the limiting nuclear pore due to the redundant and possibly overlapping nuclear import signals present in Vpr, matrix, and integrase. We have previously recognized the presence of at least two distinct and novel nuclear import signals residing within Vpr that, unlike matrix and integrase, bypass the classical importin alpha/beta-dependent signals and do not require energy or a RanGTP gradient. We now report that the carboxy-terminal region of Vpr (amino acids 73 to 96) contains a bipartite nuclear localization signal (NLS) composed of multiple arginine residues. Surprisingly, when the leucine-rich Vpr(1-71) fragment, previously shown to harbor an NLS, or full-length Vpr is fused to the C terminus of a green fluorescent protein-pyruvate kinase (GFP-PK) chimera, the resultant protein is almost exclusively detected in the cytoplasm. However, the addition of leptomycin B (LMB), a potent inhibitor of CRM1-dependent nuclear export, produces a shift from a cytoplasmic localization to a nuclear pattern, suggesting that these Vpr fusion proteins shuttle into and out of the nucleus. Studies of nuclear import with GFP-PK-Vpr fusion proteins in the presence of LMB reveals that both of the leucine-rich alpha-helices are required for effective nuclear uptake and thus define a unique NLS. Using a modified heterokaryon analysis, we have localized the Vpr nuclear export signal to the second leucine-rich helix, overlapping a portion of the amino-terminal nuclear import signal. These studies thus define HIV-1 Vpr as a nucleocytoplasmic shuttling protein.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) Vif protein has an important role in the regulation of virus infectivity. This function of Vif is cell type specific, and virions produced in the absence of Vif in restrictive cells have greatly reduced infectivity. We show here that the intracellular localization of Vif is dependent on the presence of the intermediate filament vimentin. Fractionation of acutely infected T cells or transiently transfected HeLa cells demonstrates the existence of a soluble and a cytoskeletal form and to a lesser extent the presence of a detergent-extractable form of Vif. Confocal microscopy suggests that in HeLa cells, Vif is predominantly present in the cytoplasm and closely colocalizes with the intermediate filament vimentin. Treatment of cells with drugs affecting the structure of vimentin filaments affect the localization of Vif accordingly, indicating a close association of Vif with this cytoskeletal component. The association of Vif with vimentin can cause the collapse of the intermediate filament network into a perinuclear aggregate. In contrast, analysis of Vif in vimentin-negative cells reveals significant staining of the nucleus and the nuclear membrane in addition to diffuse cytoplasmic staining. In addition to the association of Vif with intermediate filaments, analyses of virion preparations demonstrate that Vif is incorporated into virus particles. In sucrose density gradients, Vif cosediments with capsid proteins even after detergent treatment of virus preparations, suggesting that Vif is associated with the inner core of HIV particles. We propose a model in which Vif has a crucial function as a virion component either by regulating virus maturation or following virus entry into a host cell possibly involving an interaction with the cellular cytoskeletal network.  相似文献   

10.
The mechanism of CD4(+) T-cell depletion in human immunodeficiency virus type 1 (HIV-1)-infected individuals remains unknown, although mounting evidence suggests that direct viral cytopathicity contributes to this loss. The HIV-1 Vpr accessory protein causes cell death and arrests cells in the G(2)/M phase; however, the molecular mechanism underlying these properties is not clear. Mutation of hydrophobic residues on the surface of its third alpha-helix disrupted Vpr toxicity, G(2)/M arrest induction, nuclear localization, and self-association, implicating this region in multiple Vpr functions. Cytopathicity by virion-delivered mutant Vpr protein correlated with G(2)/M arrest induction but not nuclear localization or self-association. However, infection with whole virus encoding these Vpr mutants did not abrogate HIV-1-induced cell killing. Rather, mutant Vpr proteins that are impaired for G(2)/M block still prevented infected cell proliferation, and this property correlated with the death of infected cells. Chemical agents that inhibit infected cells from entering G(2)/M also did not reduce HIV-1 cytopathicity. Combined, these data implicate Vpr in HIV-1 killing through a mechanism involving inhibiting cell division but not necessarily in G(2)/M. Thus, the hydrophobic region of the third alpha-helix of Vpr is crucial for mediating G(2)/M arrest, nuclear localization, and self-association but dispensable for HIV-1 cytopathicity due to residual cell proliferation blockade mediated by a separate region of the protein.  相似文献   

11.
Viral protein R (Vpr) of human immunodeficiency virus type 1 inhibits cell proliferation by arresting the cell cycle at the G(2) phase and inducing to apoptosis after G(2) arrest. We have reported previously that C81, a carboxy-terminally truncated form of Vpr, interferes with cell proliferation via a novel pathway that is distinct from G(2) arrest. However, the mechanism of this effect of C81 is unknown. We demonstrate here that C81 can induce apoptosis via G(1) arrest of the cell cycle. Immunostaining for various markers of stages of the cell cycle and flow cytometry analysis of DNA content showed that most HeLa cells that had been transiently transfected with a C81 expression vector were arrested at the G(1) phase and not at the G(2) or S phase of the cell cycle. Staining for annexin V, which binds phosphatidylserine on the plasma membrane, as an early indicator of apoptosis and measurement of the activity of caspase-3, a signaling molecule in apoptotic pathways, indicated that C81 is a strong inducer of apoptosis. Expression of C81 induced the condensation, fragmentation, and clumping of chromatin that are typical of apoptosis. Furthermore, the kinetics of the C81-induced G(1) arrest were closely correlated with changes in the number of annexin V-positive cells and the activity of caspase-3. Replacement of Ile or Leu residues by Pro at positions 60, 67, 74, and 81 within the leucine zipper-like domain of C81 revealed that Ile60, Leu67, and Ile74 play important roles both in the C81-induced G(1) arrest and in apoptosis. Thus, it appears that C81 induces apoptosis through pathways that are identical to those utilized for G(1) arrest of the cell cycle. It has been reported that Ile60, Leu67, and Ile74 also play an important role in the C81-induced suppression of growth. These results suggest that the suppression of growth induced by C81 result in apoptosis that is independent of G(2) arrest of the cell cycle.  相似文献   

12.
13.
The Vpr protein encoded by human immunodeficiency virus type 1 (HIV-1) is important for growth of virus in macrophages and prevents infected cells from passing into mitosis (G2 arrest). The cellular target for these functions is not known, but Vpr of HIV-1 and the related Vpr from simian immunodeficiency virus of sooty mangabeys (SIV(SM)) bind the DNA repair enzyme UNG, while the Vpx protein of SIV(SM) does not. Nonetheless, a mutational analysis of Vpr showed that binding to UNG is neither necessary nor sufficient for the effect of Vpr on the cell cycle.  相似文献   

14.
Cyclophilin A (CypA) is a member of a family of cellular proteins that share a peptidyl prolyl cis-trans isomerase (PPIase) activity. CypA was previously reported to be required for the biochemical stability and function (specifically, induction of G2 arrest) of the human immunodeficiency virus type 1 (HIV-1) protein R (Vpr). In the present study, we examine the role of the Vpr-CypA interaction on Vpr-induced G2 arrest. We find that Vpr coimmunoprecipitates with CypA and that this interaction is disrupted by substitution of proline-35 of Vpr as well as incubation with the CypA inhibitor cyclosporine A (CsA). Surprisingly, the presence of CypA or its binding to Vpr is dispensable for the ability of Vpr to induce G2 arrest. Vpr expression in CypA-/- cells leads to induction of G2 arrest in a manner that is indistinguishable from that in CypA+ cells. CsA abolished CypA-Vpr binding but had no effect on induction of G2 arrest or Vpr steady-state levels. In view of these results, we propose that the interaction with CypA is independent of the ability of Vpr to induce cell cycle arrest. The interaction between Vpr and CypA is intriguing, and further studies should examine its potential effects on other functions of Vpr.  相似文献   

15.
All primate lentiviruses known to date contain one or two open reading frames with homology to the human immunodeficiency virus type 1 (HIV-1) vpr gene. HIV-1 vpr encodes a 96-amino-acid protein with multiple functions in the viral life cycle. These functions include modulation of the viral replication kinetics, transactivation of the long terminal repeat, participation in the nuclear import of preintegration complexes, induction of G2 arrest, and induction of apoptosis. The simian immunodeficiency virus (SIV) that infects African green monkeys (SIVagm) contains a vpr homologue, which encodes a 118-amino-acid protein. SIVagm vpr is structurally and functionally related to HIV-1 vpr. The present study focuses on how three specific functions (transactivation, induction of G2 arrest, and induction of apoptosis) are related to one another at a functional level, for HIV-1 and SIVagm vpr. While our study supports previous reports demonstrating a causal relationship between induction of G2 arrest and transactivation for HIV-1 vpr, we demonstrate that the same is not true for SIVagm vpr. Transactivation by SIVagm vpr is independent of cell cycle perturbation. In addition, we show that induction of G2 arrest is necessary for the induction of apoptosis by HIV-1 vpr but that the induction of apoptosis by SIVagm vpr is cell cycle independent. Finally, while SIVagm vpr retains its transactivation function in human cells, it is unable to induce G2 arrest or apoptosis in such cells, suggesting that the cytopathic effects of SIVagm vpr are species specific. Taken together, our results suggest that while the multiple functions of vpr are conserved between HIV-1 and SIVagm, the mechanisms leading to the execution of such functions are divergent.  相似文献   

16.
The chemokine receptor CCR5 is the major fusion coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). To define the structures of CCR5 that can support envelope (Env)-mediated membrane fusion, we analyzed the activity of homologs, chimeras, and mutants of human CCR5 in a sensitive gene reporter cell-cell fusion assay. Simian, but not murine, homologs of CCR5 were fully active as HIV-1 fusion coreceptors. Chimeras between CCR5 and divergent chemokine receptors demonstrated the existence of two distinct regions of CCR5 that could be utilized for Env-mediated fusion, the amino-terminal domain and the extracellular loops. Dual-tropic Env proteins were particularly sensitive to alterations in the CCR5 amino-terminal domain, suggesting that this domain may play a pivotal role in the evolution of coreceptor usage in vivo. We identified individual residues in both functional regions, Asp-11, Lys-197, and Asp-276, that contribute to coreceptor function. Deletion of a highly conserved cytoplasmic motif rendered CCR5 incapable of signaling but did not abrogate its ability to function as a coreceptor, implying the independence of fusion and G-protein-mediated chemokine receptor signaling. Finally, we developed a novel monoclonal antibody to CCR5 to assist in future studies of CCR5 expression.  相似文献   

17.
Wang JH  Janas AM  Olson WJ  Wu L 《Journal of virology》2007,81(17):8933-8943
Dendritic cells (DCs) potently stimulate the transmission of human immunodeficiency virus type 1 (HIV-1) to CD4(+) T cells. Immature DCs (iDCs) located in submucosal tissues can capture HIV-1 and migrate to lymphoid tissues, where they become mature DCs (mDCs) for effective antigen presentation. DC maturation promotes HIV-1 transmission; however, the underlying mechanisms remain unclear. Here we have compared monocyte-derived iDCs and mDCs for their efficiencies and mechanisms of HIV-1 transmission. We have found that mDCs significantly facilitate HIV-1 endocytosis and efficiently concentrate HIV-1 at virological synapses, which contributes to mDC-enhanced viral transmission, at least in part. mDCs were more efficient than iDCs in transferring HIV-1 to various types of target cells independently of C-type lectins, which partially accounted for iDC-mediated HIV-1 transmission. Efficient HIV-1 trans-infection mediated by iDCs and mDCs required contact between DCs and target cells. Moreover, rapid HIV-1 degradation occurred in both iDCs and mDCs, which correlated with the lack of HIV-1 retention-mediated long-term viral transmission. Our results provide new insights into the mechanisms underlying DC-mediated HIV-1 transmission, suggesting that HIV-1 exploits mDCs to facilitate its dissemination within lymphoid tissues.  相似文献   

18.
Accessory protein Vpr of human immunodeficiency virus type 1 (HIV-1) arrests cell cycling at G(2)/M phase in human and simian cells. Recently, it has been shown that Vpr also causes cell cycle arrest in the fission yeast Schizosaccharomyces pombe, which shares the cell cycle regulatory mechanisms with higher eukaryotes including humans. In this study, in order to identify host cellular factors involved in Vpr-induced cell cycle arrest, the ability of Vpr to cause elongated cellular morphology (cdc phenotype) typical of G(2)/M cell cycle arrest in wild-type and various mutant strains of S. pombe was examined. Our results indicated that Vpr caused the cdc phenotype in wild-type S. pombe as well as in strains carrying mutations, such as the cdc2-3w, Deltacdc25, rad1-1, Deltachk1, Deltamik1, and Deltappa1 strains. However, other mutants, such as the cdc2-1w, Deltawee1, Deltappa2, and Deltarad24 strains, failed to show a distinct cdc phenotype in response to Vpr expression. Results of these genetic studies suggested that Wee1, Ppa2, and Rad24 might be required for induction of cell cycle arrest by HIV-1 Vpr. Cell proliferation was inhibited by Vpr expression in all of the strains examined including the ones that did not show the cdc phenotype. The results supported the previously suggested possibility that Vpr affects the cell cycle and cell proliferation through different pathways.  相似文献   

19.
Monocytes/macrophages are major targets of human immunodeficiency virus type 1 (HIV-1) infection. The viral preintegration complex (PIC) of HIV-1 enters the nuclei of monocyte-derived macrophages, but very little PIC migrates into the nuclei of immature monocytes. Vpr, one of the accessory gene products of HIV-1, is essential for the nuclear import of PIC in these cells, although the role of Vpr in the entry mechanism of PIC remains to be clarified. We have shown previously that Vpr is targeted to the nuclear envelope and then transported into the nucleus by importin alpha alone, in an importin beta-independent manner. Here we demonstrate that the nuclear import of Vpr is strongly promoted by the addition of cytoplasmic extract from macrophages but not of that from monocytes and that the nuclear import activity is lost with immunodepletion of importin alpha from the cytoplasmic extract. Immunoblot analysis and real-time PCR demonstrate that immature monocytes express importin alpha at low levels, whereas the expression of three major importin alpha isoforms markedly increases upon their differentiation into macrophages, indicating that the expression of importin alpha is required for nuclear import of Vpr. Furthermore, interaction between importin alpha and the N-terminal alpha-helical domain of Vpr is indispensable, not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages. This study suggests the possibility that the binding of Vpr to importin alpha, preceding a novel nuclear import process, is a potential target for therapeutic intervention.  相似文献   

20.
Kamata M  Aida Y 《Journal of virology》2000,74(15):7179-7186
To identify the domains of Vpr that are involved nuclear localization, we transfected HeLa cells with a panel of expression vectors that encode mutant Vpr protein with deletions or substitutions within putative domains. Immunofluorescence staining of transfected cells revealed that wild-type Vpr was localized predominantly in the nucleus and the nuclear envelope and certainly in the cytoplasm. Introduction of substitutions or deletions within alphaH1 or alphaH2 resulted, by contrast, in diffuse expression over the entire cell. In addition, double mutations within both of these alpha-helical domains led to the complete absence of Vpr from nuclei. Next, we prepared HeLa cells that express chimeric proteins which consist of the alphaH1 and alphaH2 domains fused individually with green fluorescent protein (GFP) and a Flag tag and extracted them with digitonin and Triton X-100 prior to fixation. Flag-alphaH1-GFP was detected in the nucleus but not in the cytoplasm, while Flag-alphaH2-GFP was retained predominantly in the nucleus and in a small amount in the cytoplasm. The immunostaining patterns were almost eliminated by substitutions in each chimeric protein. Thus, it appeared that the two alpha-helical domains might be involved in nuclear import by binding to certain cellular factors. Taken together, our data suggest that the two putative alpha-helical domains mediate the nuclear localization of Vpr by at least two mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号