共查询到20条相似文献,搜索用时 0 毫秒
1.
J. Wolf 《Plant and Soil》1996,185(1):113-123
The effects of increased atmospheric CO2 on crop growth and dry matter allocation may change if nutrient supply becomes insufficient for maximal growth. Increased atmospheric CO2 may also cause changes in minimum nutrient concentration in plant tissue and hence in the nutrient use efficiency or yield-nutrient uptake ratios of crops. To study these effects for spring wheat, pot experiments have been carried out in two glass houses at ambient and doubled CO2 concentration. Wheat plants were grown at different supplies of N, P or K. Doubling of ambient CO2 resulted in a large increase in total biomass (+70%) and grain yield when the nutrient supply was optimum. With strong N and K limitation this CO2 effect was about halved and with strong P limitation it became almost nil. Doubling of ambient CO2 resulted in a 10% lower minimum N concentration in plant tissue and in no change in the minimum P concentration. 相似文献
2.
Previous investigations of plant responses to higher CO 2 levels were mostly based on physiological measurements and biochemical assays. In this study, a proteomic approach was employed to investigate plant response to higher CO 2 levels using rice as a model. Ten-day-old seedlings were progressively exposed to 760 ppm, 1140 ppm, and 1520 ppm CO 2 concentrations for 24 h each. The net photosynthesis rate ( P n), stomatal conductance ( G s), transpiration rate ( E), and intercellular to ambient CO 2 concentration ratio ( C i/ C a) were measured. P n, G s, and E showed a maximum increase at 1140 ppm CO 2, but further exposure to 1520 ppm for 24 h resulted in down regulation of these. Proteins extracted from leaves were subjected to 2-DE analysis, and 57 spots showing differential expression patterns, as detected by profile analysis, were identified by MALDI-TOF/TOF-MS. Most of the proteins belonged to photosynthesis, carbon metabolism, and energy pathways. Several molecular chaperones and ascorbate peroxidase were also found to respond to higher CO 2 levels. Concomitant with the down regulation of P n and G s, the levels of enzymes of the regeneration phase of the Calvin cycle were decreased. Correlations between the protein profiles and the photosynthetic measurements at the three CO 2 levels were explored. 相似文献
3.
Annick Bertrand Danielle Prévost Francine J. Bigras Roger Lalande Gaëtan F. Tremblay Yves Castonguay Gilles Bélanger 《Plant and Soil》2007,290(1-2):173-187
Increased atmospheric CO2 was shown to affect a variety of physiological processes in plants, including photosynthesis and growth with repercussions
on crop yield and nutritive value. Perennial alfalfa (Medicago sativa L.) is a sustainable crop with a deep root system, living in symbiosis with rhizobium for nitrogen (N) fixation. The objective
of the project was to determine the combined effects of elevated CO2 and rhizobial strains on photosynthesis, growth, N fixation, and nutritive value of alfalfa, and on soil microflora. Alfalfa
inoculated with two different strains of rhizobia (Sinorhizobium meliloti strains A2 and NRG34) was grown 2 months at day/night temperatures of 22/17°C under either 400 (near ambient) or 800 (elevated)
μmol mol−1 of CO2. The photosynthetic response of alfalfa to elevated CO2 differed according to the rhizobial strain. At the end of the experiment, elevated CO2 stimulated photosynthetic rates by 50% in plants associated with A2 but there was no significant increase in plants nodulated
with NRG34. Nitrogenase activity (+38%) and shoot growth (+60%) were stimulated under 800 μmol mol−1 of CO2 for alfalfa inoculated with both strains. Root dry weight was significantly higher at 800 μmol mol−1 of CO2 only with strain A2. Fibre concentration decreased in response to elevated atmospheric CO2 in alfalfa inoculated with strain A2 resulting in plant material with greater nutritive value when inoculated with A2 compared
to NRG34. In the soil, elevated CO2 increased the proportion of fungi in the microbial community while decreasing Gram− bacteria. For alfalfa inoculated with rhizobial strain A2, photosynthetic rates, nitrogenase activity, and growth were all
stimulated by increased atmospheric CO2 compared to less consistently positive responses to elevated CO2 when inoculated with NRG34. Our results show that it is possible to identify rhizobial strains to improve plant performance
under predicted future CO2 concentrations with no negative effect on nutritive value.
The Canadian Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged. 相似文献
4.
CO2浓度升高和施氮条件下小麦根际呼吸对土壤呼吸的贡献 总被引:4,自引:0,他引:4
依托FACE技术平台,采用稳定13C同位素技术,通过将小麦(C3作物)种植于长期单作玉米(C4作物)的土壤上,研究了大气CO2浓度升高和不同氮肥水平对土壤排放CO2的δ13C值及根际呼吸的影响.结果表明:种植小麦后土壤排放CO2的δ13C值随作物生长逐渐降低,CO2浓度升高200 μmol·mol-1显著降低了孕穗、抽穗期(施氮量为250 kg·hm-2,HN)与拔节、孕穗期(施氮量为150 kg·hm-2,LN)土壤排放CO2的δ13C值,显著提高了孕穗、抽穗期的根际呼吸比例.拔节至成熟期,根际呼吸占土壤呼吸的比例在高CO2浓度下为24%~48% (HN)和21% ~48% (LN),在正常CO2浓度下为20% ~36% (HN)和19%~32%(LN).不同CO2浓度下土壤排放CO2的δ13C值和根际呼吸对氮肥增加的响应不同,CO2浓度与氮肥用量在拔节期对根际呼吸的交互效应显著. 相似文献
5.
Flowering time and elevated atmospheric CO2 总被引:1,自引:1,他引:0
Flowering is a critical milestone in the life cycle of plants, and changes in the timing of flowering may alter processes at the species, community and ecosystem levels. Therefore understanding flowering-time responses to global change drivers, such as elevated atmospheric carbon dioxide concentrations, [CO(2)], is necessary to predict the impacts of global change on natural and agricultural ecosystems. Here we summarize the results of 60 studies reporting flowering-time responses (defined as the time to first visible flower) of both crop and wild species at elevated [CO(2)]. These studies suggest that elevated [CO(2)] will influence flowering time in the future. In addition, interactions between elevated [CO(2)] and other global change factors may further complicate our ability to predict changes in flowering time. One approach to overcoming this problem is to elucidate the primary mechanisms that control flowering-time responses to elevated [CO(2)]. Unfortunately, the mechanisms controlling these responses are not known. However, past work has indicated that carbon metabolism exerts partial control on flowering time, and therefore may be involved in elevated [CO(2)]-induced changes in flowering time. This review also indicates the need for more studies addressing the effects of global change drivers on developmental processes in plants. 相似文献
6.
利用开顶式熏气室研究了不同土壤水分条件下不同CO2浓度对禾谷缢管蚜种群的影响,以期对未来大气CO2浓度升高条件下不同降雨地区的小麦-蚜虫关系发展趋势做出蚜虫关系发展趋势做出初步预测,结果表明,随CO2浓度从350ul.L^-1上升至550ul.L^-1时,60%土壤水分下的种群增长最快;当CO2浓度从550ul.L^-1上升到700ul.L^-1时,60%和40%土亍水分下的种群增长相近,且高于80%土壤水分下的增长,据此可以认为,随大气CO2浓度升高,禾谷缢管蚜种群会持续增长,从目前至下世纪中叶的时间内可能是蚜种群增长最快的阶段,特别在干旱,半干旱地区禾谷缢管蚜种群增长幅度较大,小麦受受较重。 相似文献
7.
为探究小麦品种类型对盐胁迫的生理响应及敏感性差异,以耐盐型品种济麦22和盐敏感型品种河农6425为材料,对幼苗期植株施以不同浓度的NaCl胁迫处理,比较分析了两个品种幼苗在胁迫条件下的生长、生理生化和叶绿体荧光特征等方面的差异。结果表明,NaCl胁迫对幼苗地上和地下部分的生长表现浓度依赖性的抑制效应,对耐盐型品种的抑制程度较小。在生理响应方面,幼苗体内的Na+含量随NaCl 浓度的增加而上升,K+和Ca2+含量则表现相反的变化趋势,耐盐型品种幼苗在胁迫处理前、后均具有较高的K+/Na+比和Ca2+/Na+比;NaCl胁迫导致幼苗的光系统Ⅱ受损,表现在Fv/Fm、Fv/Fo、qP 和YⅡ 等叶绿体荧光参数数值下降,降幅在耐盐性品种上相对较小。在氧化胁迫和抗氧化系统方面,NaCl胁迫导致幼苗体内活性氧水平的上升和过氧化物酶(POD)、过氧化氢酶(CAT)等抗氧化酶的响应;POD活性在处理后的0-12 d范围内呈先下降后上升的趋势,CAT活性则呈先上升后下降的趋势。耐盐品种的POD活性在胁迫早期受抑制时间较短,随后的响应更迅速且上升幅度更高;耐盐品种的CAT活性上升幅度更高,且在胁迫后期对高浓度NaCl和长时间胁迫导致的酶活性抑制的耐受性更强。耐盐品种抗氧化酶的这一响应特征与其较低的活性氧上升幅度一致,也与其较低水平的代表膜损伤程度的丙二醛(MDA)积累一致。耐盐型品种根部的MDA积累经200 mmol/L NaCl处理1 d后达到峰值,而盐敏感品种根部的MDA积累经150 mmol/L NaCl处理1 d后即达到峰值。以上研究结果表明,耐盐型小麦品种济麦22可分别通过其较强的K+/Na+、Ca2+/Na+调节能力和抗氧化酶体系缓解盐胁迫所导致的渗透胁迫和活性氧伤害,从而表现出耐盐的特征。 相似文献
8.
This review reports the physiological and metabolic changes in plants during development under elevated atmospheric carbon dioxide concentration and/or limited-nitrogen supply in order to establish their effects on leaf senescence induction. Elevated CO2 concentration and nitrogen supply modify gene expression, protein content and composition, various aspects of photosynthesis, sugar metabolism, nitrogen metabolism, and redox state in plants. Elevated CO2 usually causes sugar accumulation and decreased nitrogen content in plant leaves, leading to imbalanced C/N ratio in mature leaves, which is one of the main factors behind premature senescence in leaves. Elevated CO2 and low nitrogen decrease activities of some antioxidant enzymes and thus increase H2O2 production. These changes lead to oxidative stress that results in the degradation of photosynthetic pigments and eventually induce senescence. However, this accelerated leaf senescence under conditions of elevated CO2 and limited nitrogen can mobilize nutrients to growing organs and thus ensure their functionality. 相似文献
9.
Soil N availability may play an important role in regulating the long-term responses of plants to rising atmospheric CO2 partial pressure. To further examine the linkage between above- and belowground C and N cycles at elevated CO2, we grew clonally propagated cuttings of Populus grandidentata in the field at ambient and twice ambient CO2 in open bottom root boxes filled with organic matter poor native soil. Nitrogen was added to all root boxes at a rate equivalent
to net N mineralization in local dry oak forests. Nitrogen added during August was enriched with 15N to trace the flux of N within the plant-soil system. Above-and belowground growth, CO2 assimilation, and leaf N content were measured non-destructively over 142 d. After final destructive harvest, roots, stems,
and leaves were analyzed for total N and 15N.
There was no CO2 treatment effect on leaf area, root length, or net assimilation prior to the completion of N addition. Following the N addition,
leaf N content increased in both CO2 treatments, but net assimilation showed a sustained increase only in elevated CO2 grown plants. Root relative extension rate was greater at elevated CO2, both before and after the N addition. Although final root biomass was greater at elevated CO2, there was no CO2 effect on plant N uptake or allocation. While low soil N availability severely inhibited CO2 responses, high CO2 grown plants were more responsive to N. This differential behavior must be considered in light of the temporal and spatial
heterogeneity of soil resources, particularly N which often limits plant growth in temperate forests. 相似文献
10.
Legume species identity and soil nitrogen supply determine symbiotic nitrogen-fixation responses to elevated atmospheric [CO2 总被引:1,自引:1,他引:0
In nitrogen (N)-limited systems, the response of symbiotic N fixation to elevated atmospheric [CO2] may be an important determinant of ecosystem responses to this global change. Experimental tests of the effects of elevated [CO2] have not been consistent. Although rarely tested, differences among legume species and N supply may be important. In a field free-air CO2 enrichment (FACE) experiment, we determined, for four legume species, whether the effects of elevated atmospheric [CO2] on symbiotic N fixation depended on soil N availability or species identity. Natural abundance and pool-dilution 15N methods were used to estimate N fixation. Although N addition did, in general, decrease N fixation, contrary to theoretical predictions, elevated [CO2] did not universally increase N fixation. Rather, the effect of elevated [CO2] on N fixation was positive, neutral or negative, depending on the species and N addition. Our results suggest that legume species identity and N supply are critical factors in determining symbiotic N-fixation responses to increased atmospheric [CO2]. 相似文献
11.
12.
P Reischl D M Stavert S M Lewis L C Murdock B J O'Loughlin 《Journal of applied physiology (Bethesda, Md. : 1985)》1980,48(6):1077-1082
The steady-state end-tidal CO2 tension (PCO2) was examined during control and 1% CO2 inhalation periods in awake beagle dogs with an intact airway breathing through a low dead-space respiratory mask. A total of eight experiments were performed in four dogs, comprising 31 control observations and 23 CO2 inhalation observations. The 1% inhaled CO2 produced a significant increase in the steady-state end-tidal PCO2 comparable to the expected 1 Torr predicted from conventional CO2 control of ventilation. We conclude that 1% inhaled CO2 results in a hypercapnia. Any protocol that is to resolve the question of whether mechanisms are acting during low levels of inhaled CO2 such that ventilation increases without any change in arterial PCO2 must have sufficient resolving power to discriminate changes in gas tension in magnitude predicted from conventional (i.e., arterial PCO2) control of ventilation. 相似文献
13.
14.
《Environmental and Experimental Botany》2006,55(1-2):130-141
Exposing plants to long-term CO2 enrichment generally leads to increases in plant biomass, total leaf area and alterations on leaf net photosynthetic rates, stomatal conductance and water use efficiency. However, the magnitude of such effects is dependent on the availability of other potentially limiting resources. The aim of our study was to elucidate the effects of elevated CO2, applied at different temperature and water availability regimes, on nodulated alfalfa plants. Regardless of water supply, elevated CO2 enhanced plant growth, especially when combined with increased temperature although no differences were detected until 30 days of treatment. Absence of differences in leaf relative growth rate, and gas exchange measurements, suggested that plants grown in a low water regime adjusted their growth to the amount of available water. Elevated CO2 enhanced water use efficiency because of reduced water consumption and a greater dry mass production. Increased dry matter production of plants grown under elevated CO2 and temperature was the result of stimulated photosynthetic rates, greater leaf area and water use efficiency. Lack of CO2 effect on photosynthesis of plants grown at ambient temperature might be consequence of down-regulation phenomena. Plants grown at 700 μmol mol−1 CO2 maintained control nitrogen levels, discarding enhanced nitrogen availability as the main factor explaining enhanced dry matter. 相似文献
15.
氮素对高大气CO2浓度下小麦叶片光合作用的影响 总被引:2,自引:0,他引:2
通过测定小麦拔节期叶片的光合气体交换参数和光强-光合速率(Pn)响应曲线,研究了氮素对长期高大气CO2浓度(760 μmol·mol-1)下小麦叶片光合作用的影响.结果表明:在长期高大气CO2浓度下,增施氮肥能提高小麦叶片Pn、蒸腾速率(Tr)和瞬时水分利用效率(WUEi);与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片的Pn和WUEi增加,气孔导度(Gs)和胞间CO2浓度(Ci)降低.随光合有效辐射的增强,高大气CO2浓度下小麦叶片的Pn和WUEi均高于正常大气CO2浓度处理,Gs则较低,而Ci和Tr无显著变化.高氮水平下小麦叶片Gs与Pn、Tr、WUEi呈线性正相关,Gs与Ci在正常大气CO2浓度下呈线性负相关,但高大气CO2浓度下二者无相关性;低氮水平下小麦叶片的Gs与Pn、WUEi无相关性,而与Ci和Tr呈线性正相关,表明高大气CO2浓度下低氮水平的小麦叶片Pn由非气孔因素限制. 相似文献
16.
Photosynthetic acclimation to elevated CO2 in wheat cultivars 总被引:2,自引:0,他引:2
Wheat (T. aestivum) cvs. Kalyansona and Kundan grown under atmospheric (CA) and elevated CO2 concentrations (650±50 cm3 m-3 - CE) in open top chambers were examined for net photosynthetic rate (PN), stomatal limitation (l
s) of P
N, ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, and saccharide content of the leaves. The P
N values of both CA- and CE-grown plants compared at the same CO2 concentration showed a down regulation under CE at the post-anthesis stage. The negative acclimation of P
N appeared to be due to both stomatal and mesophyll components, and the RuBPC activity got also adjusted. There was a decrease
in activation state of RuBPC under CE. In connection with this, an increased accumulation of saccharides in wheat leaf under
CE was observed. Kalyansona, owing to its larger sink potential in terms of the number of grains, showed a greater enhancement
under CE in both post-ear emergence dry matter production and grain yield. Under CE, this cultivar also showed a lower down
regulation of P
N than Kundan.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
17.
Wheat (T. aestivum) cvs. Kalyansona and Kundan grown under atmospheric (CA) and elevated CO2 concentrations (650±50 cm3 m-3 - CE) in open top chambers were examined for net photosynthetic rate (PN), stomatal limitation (l s) of P N, ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, and saccharide content of the leaves. The P N values of both CA- and CE-grown plants compared at the same CO2 concentration showed a down regulation under CE at the post-anthesis stage. The negative acclimation of P N appeared to be due to both stomatal and mesophyll components, and the RuBPC activity got also adjusted. There was a decrease in activation state of RuBPC under CE. In connection with this, an increased accumulation of saccharides in wheat leaf under CE was observed. Kalyansona, owing to its larger sink potential in terms of the number of grains, showed a greater enhancement under CE in both post-ear emergence dry matter production and grain yield. Under CE, this cultivar also showed a lower down regulation of P N than Kundan. 相似文献
18.
The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO2 下载免费PDF全文
Alireza Houshmandfar Glenn J. Fitzgerald Garry O'Leary Sabine Tausz‐Posch Andrew Fletcher Michael Tausz 《Physiologia plantarum》2018,163(4):516-529
The impact of elevated [CO2] (e[CO2]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration‐driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free‐air CO2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m?2) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO2], but that nutrient uptake per unit water transpired is higher under e[CO2] than under ambient [CO2] (a[CO2]). This result suggests that transpiration‐driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO2], but cannot solely explain the overall decline. 相似文献
19.
Summary Communities, consisting of six co-occurring, disturbed site annuals, were subjected to CO2 unenriched (300 ppm) and to CO2 enriched (450 and 600 ppm) atmospheres at different levels of light and nutrient availability. In general, total community production increased with CO2 enrichment to 450 ppm, but a further increase in CO2 to 600 ppm had little or no effect. The response of community production to CO2 level was not affected by nutrient availability but was affected by light level.Of the six species, four display C3 metabolism. The proportion of total community production contributed by these species increased as a result of CO2 enrichment, and was dependent upon both light and nutrient availability. The relative success of some species, particularly in terms of reproduction (total seed biomass), was significantly altered by CO2 concentration depending on the level of nutrients. There were not only changes in reproductive success (seed biomass) and shoot biomass but also changes in the proportion of biomass allocated to seed.These experiments demonstrate that CO2 enrichment does affect annual plant communities both in terms of productivity and species composition and that the affect of CO2 on such system may depend upon other resources such as light and nutrients. 相似文献
20.
Tree saplings, two groups of three species from each of two deciduous tree communities, were grown in competition at three CO2 concentrations and two light levels. After one growing season, biomass was measured to assess the effect of CO2 on community structure, and nitrogen and phosphorus concentrations were measured for leaves, stems, and roots of all trees. Gas-exchange measurements were made on the same species grown under the same CO2 concentrations.Photosynthetic capacity (rate of photosynthesis at saturating CO2 and light) tended to decline as CO2 concentration increased, but differences were not statistically significant. Stomatal conductance declined significantly as CO2 increased. Nitrogen and phosphorus concentrations generally declined as CO2 increased, but there were some unexpected patterns in roots and stems. CO2 concentration did not significantly affect the overall growth of either community after one season, but the relative biomass of each species changed in a complex way, depending on CO2 light level, and community. 相似文献