首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The ability of regulatory factors to access their nucleosomal targets is modulated by nuclear proteins such as histone H1 and HMGN (previously named HMG-14/-17 family) that bind to nucleosomes and either stabilize or destabilize the higher-order chromatin structure. We tested whether HMGN proteins affect the interaction of histone H1 with chromatin. Using microinjection into living cells expressing H1–GFP and photobleaching techniques, we found that wild-type HMGN, but not HMGN point mutants that do not bind to nucleosomes, inhibits the binding of H1 to nucleosomes. HMGN proteins compete with H1 for nucleosome sites but do not displace statically bound H1 from chromatin. Our results provide evidence for in vivo competition among chromosomal proteins for binding sites on chromatin and suggest that the local structure of the chromatin fiber is modulated by a dynamic interplay between nucleosomal binding proteins.  相似文献   

2.
3.
During chromatin replication and nucleosome assembly, newly synthesized histone H4 is acetylated before it is deposited onto DNA, then deacetylated as assembly proceeds. In a previous study (Perry and Annunziato, Nucleic Acids Res. 17, 4275 [1989]) it was shown that when replication occurs in the presence of sodium butyrate (thereby inhibiting histone deacetylation), nascent chromatin fails to mature fully and instead remains preferentially sensitive to DNaseI, more soluble in magnesium, and depleted of histone H1 (relative to mature chromatin). In the following report the relationships between chromatin replication, histone acetylation, and H1-mediated nucleosome aggregation were further investigated. Chromatin was replicated in the presence or absence of sodium butyrate; isolated nucleosomes were stripped of linker histone, reconstituted with H1, and treated to produce Mg(2+)-soluble and Mg(2+)-insoluble chromatin fractions. Following the removal of H1, all solubility differences between chromatin replicated in sodium butyrate for 30 min (bu-chromatin) and control chromatin were lost. Reconstitution with H1 completely restored the preferential Mg(2+)-solubility of bu-chromatin, demonstrating that a reduced capacity for aggregation/condensation is an inherent feature of acetylated nascent nucleosomes; however, titration with excess H1 caused the solubility differences to be lost again. Moreover, when the core histone N-terminal "tails" (the sites of acetylation) were removed by trypsinization prior to reconstitution, H1 was unable to reestablish the altered solubility of chromatin replicated in butyrate. Thus, the core histone "tails," and the acetylation thereof, not only modulate H1-mediated nucleosome interactions in vitro, but also strongly influence the ability of H1 to differentiate between new and old nucleosomes. The data suggest a possible mechanism for the control of H1 deposition and/or chromatin folding during nucleosome assembly.  相似文献   

4.
Modifications on histones or on DNA recruit proteins that regulate chromatin function. Here, we use nucleosomes methylated on DNA and on histone H3 in an affinity assay, in conjunction with a SILAC-based proteomic analysis, to identify "crosstalk" between these two distinct classes of modification. Our analysis reveals proteins whose binding to nucleosomes is regulated by methylation of CpGs, H3K4, H3K9, and H3K27 or a combination thereof. We identify the origin recognition complex (ORC), including LRWD1 as a subunit, to be a methylation-sensitive nucleosome interactor that is recruited cooperatively by DNA and histone methylation. Other interactors, such as the lysine demethylase Fbxl11/KDM2A, recognize nucleosomes methylated on histones, but their recruitment is disrupted by DNA methylation. These data establish SILAC nucleosome affinity purifications (SNAP) as a tool for studying the dynamics between different chromatin modifications and provide a modification binding "profile" for proteins regulated by DNA and histone methylation.  相似文献   

5.
Two groups of plant chromatin-associated high mobility group (HMG) proteins, namely the HMGA family, typically containing four A/T-hook DNA-binding motifs, and the HMGB family, containing a single HMG-box DNA-binding domain, have been identified. We have examined the interaction of recombinant maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA in the presence of H1 differed from that observed in the absence of H1. HMGA and the HMGB proteins bound H1-containing nucleosome particles with similar affinity. The plant HMG proteins could also bind nucleosomes that were briefly treated with trypsin (removing the N-terminal domains of the core histones), suggesting that the histone N-termini are dispensable for HMG protein binding. In the presence of untreated nucleosomes and trypsinised nucleosomes, HMGB1 could be chemically crosslinked with a core histone, which indicates that the trypsin-resistant part of the histones within the nucleosome is the main interaction partner of HMGB1 rather than the histone N-termini. In conclusion, these results indicate that specific nucleosome binding of the plant HMGB proteins requires simultaneous DNA and histone contacts.  相似文献   

6.
Nucleosome dimers containing, on average, a single molecule of histone H5 have been isolated from chicken erythrocyte nuclei and the associated DNA fragments cloned and sequenced. The average sequence organization of at least one of the two nucleosomes in the dimers is highly asymmetric and suggests that the torsional, as well as the axial, flexibility of DNA is a determinant of nucleosome positioning. On average the nucleosome dimer is a polar structure containing linker DNA of variable lengths. The sequences associated with H5 containing nucleosomes and core particles are sufficiently different to indicate that removal of histone H5 (or H1) from chromatin may result in the migration of the histone octamer and a consequent exposure of sites for regulatory proteins.  相似文献   

7.
8.
The dynamic interaction of chromatin-binding proteins with their nucleosome binding sites is an important element in regulating the structure and function of chromatin in living cells. Here we review the major factors regulating the intranuclear mobility and chromatin binding of the linker histone H1, the most abundant family of nucleosome-binding proteins. The information available reveals that multiple and diverse factors modulate the interaction of H1 with chromatin at both a local and global level. This multifaceted mode of modulating the interaction of H1 with nucleosomes is part of the mechanism that regulates the dynamics of the chromatin fiber in living cells.  相似文献   

9.
10.
HMG-D is an abundant chromosomal protein associated with condensed chromatin during the first nuclear cleavage cycles of the developing Drosophila embryo. We previously suggested that HMG-D might substitute for the linker histone H1 in the preblastoderm embryo and that this substitution might result in the characteristic less compacted chromatin. We have now studied the association of HMG-D with chromatin using a cell-free system for chromatin reconstitution derived from Drosophila embryos. Association of HMG-D with chromatin, like that of histone H1, increases the nucleosome spacing indicative of binding to the linker DNA between nucleosomes. HMG-D interacts with DNA during the early phases of nucleosome assembly but is gradually displaced as chromatin matures. By contrast, purified chromatin can be loaded with stoichiometric amounts of HMG-D, and this can be displaced upon addition of histone H1. A direct physical interaction between HMG-D and histone H1 was observed in a Far Western analysis. The competitive nature of this interaction is reminiscent of the apparent replacement of HMG-D by H1 during mid-blastula transition. These data are consistent with the hypothesis that HMG-D functions as a specialized linker protein prior to appearance of histone H1.  相似文献   

11.
The human polybromo-1 protein is thought to localize the Polybromo, BRG1-associated factors chromatin-remodeling complex to kinetochores during mitosis via direct interaction of its six tandem bromodomains with acetylated nucleosomes. Bromodomains are acetyl-lysine binding modules roughly 100 amino acids in length originally found in chromatin associated proteins. Previous studies verified acetyl-histone binding by each bromodomain, but site-specificity, a central tenet of the histone code hypothesis, was not examined. Here, the acetylation site-dependence of bromodomain-histone interactions was examined using steady-state fluorescence anisotropy. Results indicate that single bromodomains bind specific acetyl-lysine sites within the histone tail with sub-micromolar affinity. Identification of duplicate target sites suggests that native Pb1 interacts with both copies of histone H3 upon nucleosome assembly. Quantitative analysis of single bromodomain-histone interactions can be used to develop hypotheses regarding the histone acetylation pattern that acts as the binding target of the native polybromo-1 protein.  相似文献   

12.
13.
Linker histone H1 is the major factor that stabilizes higher order chromatin structure and modulates the action of chromatin-remodeling enzymes. We have previously shown that parathymosin, an acidic, nuclear protein binds to histone H1 in vitro and in vivo. Confocal laser scanning microscopy reveals a nuclear punctuate staining of the endogenous protein in interphase cells, which is excluded from dense heterochromatic regions. Using an in vitro chromatin reconstitution system under physiological conditions, we show here that parathymosin (ParaT) inhibits the binding of H1 to chromatin in a dose-dependent manner. Consistent with these findings, H1-containing chromatin assembled in the presence of ParaT has reduced nucleosome spacing. These observations suggest that interaction of the two proteins might result in a conformational change of H1. Fluorescence spectroscopy and circular dichroism-based measurements on mixtures of H1 and ParaT confirm this hypothesis. Human sperm nuclei challenged with ParaT become highly decondensed, whereas overexpression of green fluorescent protein- or FLAG-tagged protein in HeLa cells induces global chromatin decondensation and increases the accessibility of chromatin to micrococcal nuclease digestion. Our data suggest a role of parathymosin in the remodeling of higher order chromatin structure through modulation of H1 interaction with nucleosomes and point to its involvement in chromatin-dependent functions.  相似文献   

14.
15.
The linker histones are involved in the salt-dependent folding of the nucleosomes into higher-order chromatin structures. To better understand the mechanism of action of these histones in chromatin, we studied the interactions of the linker histone H1 with DNA at various histone/DNA ratios and at different ionic strengths. In direct competition experiments, we have confirmed the binding of H1 to superhelical DNA in preference to linear or nicked circular DNA forms. We show that the electrophoretic mobility of the H1/supercoiled DNA complex decreases with increasing H1 concentrations and increases with ionic strengths. These results indicate that the interaction of the linker histone H1 with supercoiled DNA results in a soluble binding of H1 with DNA at low H1 or salt concentrations and aggregation at higher H1 concentrations. Moreover, we show that H1 dissociates from the DNA or nucleosomes at high salt concentrations. By the immobilized template pull-down assay, we confirm these data using the physiologically relevant nucleosome array template.  相似文献   

16.
It is well established that chromatin is a destination for signal transduction, affecting many DNA-templated processes. Histone proteins in particular are extensively post-translationally modified. We are interested in how the complex repertoire of histone modifications is coordinately regulated to generate meaningful combinations of "marks" at physiologically relevant genomic locations. One important mechanism is "cross-talk" between pre-existing histone post-translational modifications and enzymes that subsequently add or remove modifications on chromatin. Here, we use chemically defined "designer" nucleosomes to investigate novel enzymatic cross-talk relationships between the most abundant histone ubiquitylation sites, H2AK119ub and H2BK120ub, and two important histone methyltransferases, Dot1L and PRC2. Although the presence of H2Bub in nucleosomes greatly stimulated Dot1L methylation of H3K79, we found that H2Aub did not influence Dot1L activity. In contrast, we show that H2Aub inhibited PRC2 methylation of H3K27, but H2Bub did not influence PRC2 activity. Taken together, these results highlight how the position of nucleosome monoubiquitylation affects the specificity and direction of cross-talk with enzymatic activities on chromatin.  相似文献   

17.
We have previously shown that Saccharomyces cerevisiae Isw2 complex slides nucleosomes to remodel chromatin in vivo. Our data suggested a model in which Isw2 complex binds the histone octamer and DNA separately to generate the force necessary for nucleosome movement. Here we find that the histone H4 "basic patch" is the only portion of any amino-terminal histone tail required for both target-specific association of Isw2 complex with chromatin and chromatin remodeling in vivo, whereas it is dispensable for basal levels of chromatin binding. Similarly, we find that nonremodeled chromatin structure and integrity of Isw2 complex are required only for target-specific association of Isw2 with chromatin. These data demonstrate fundamental differences between the target-specific and basal modes of chromatin binding by Isw2 complex in vivo and suggest that only the former involves contributions from DNA, histone H4, and sequence-specific DNA binding proteins. We propose a model for target recognition and chromatin remodeling by Isw2 complex in vivo.  相似文献   

18.
Numerous nuclear proteins bind to chromatin by targeting unique DNA sequences or specific histone modifications. In contrast, HMGN proteins recognize the generic structure of the 147-bp nucleosome core particle. HMGNs alter the structure and activity of chromatin by binding to nucleosomes; however, the determinants of the specific interaction of HMGNs with chromatin are not known. Here we use systematic mutagenesis, quantitative fluorescence recovery after photobleaching, fluorescence imaging, and mobility shift assays to identify the determinants important for the specific binding of these proteins to both the chromatin of living cells and to purified nucleosomes. We find that several regions of the protein affect the affinity of HMGNs to chromatin; however, the conserved sequence RRSARLSA, is the sole determinant of the specific interaction of HMGNs with nucleosomes. Within this sequence, each of the 4 amino acids in the R-S-RL motif are the only residues absolutely essential for anchoring HMGN protein to nucleosomes, both in vivo and in vitro. Our studies identify a new chromatin-binding module that specifically recognizes nucleosome cores independently of DNA sequence or histone tail modifications.  相似文献   

19.
The high mobility group proteins 1 and 2 (HMG1/2) and histone B4 are major components of chromatin within the nuclei assembled during the incubation of Xenopus sperm chromatin in Xenopus egg extract. To investigate their potential structural and functional roles, we have cloned and expressed Xenopus HMG1 and histone B4. Purified histone B4 and HMG1 form stable complexes with nucleosomes including Xenopus 5S DNA. Both proteins associate with linker DNA and stabilize it against digestion with micrococcal nuclease, in a similar manner to histone H1. However, neither histone B4 nor HMG1 influence the DNase I or hydroxyl radical digestion of DNA within the nucleosome core. We suggest that HMG1/2 and histone B4 have a shared structural role in organizing linker DNA in the nucleosome.  相似文献   

20.
Telomeres are dynamic nucleoprotein structures that cap the ends of eukaryotic chromosomes. In humans, the long (TTAGGG)(n) double-stranded telomeric DNA repeats are bound specifically by the two related proteins TRF1 and TRF2, and are organized in nucleosomes. Whereas the role of TRF1 and TRF2 in telomeric function has been studied extensively, little is known about the involvement of telomeric nucleosomes in telomere structures or how chromatin formation may affect binding of the TRFs. Here, we address the question of whether TRF1 is able to bind to telomeric binding sites in a nucleosomal context. We show that TRF1 is able to specifically recognize telomeric binding sites located within nucleosomes, forming a ternary complex. The formation of this complex is strongly dependent on the orientation of binding sites on the nucleosome surface, rather than on the location of the binding sites with respect to the nucleosome dyad. Strikingly, TRF1 binding causes alterations in nucleosome structure without dissociation of histone subunits. These results indicate that nucleosomes contribute to the establishment of a telomeric capping complex, whose structure and dynamics can be modulated by the binding of telomeric factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号