共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis 总被引:2,自引:0,他引:2 下载免费PDF全文
Although auxin response factors (ARFs) are the first well-characterized proteins that bind to the auxin response elements, elucidation of the roles of each ARF gene in auxin responses and plant development has been challenging. Here we show that ARF19 and ARF7 not only participate in auxin signaling, but also play a critical role in ethylene responses in Arabidopsis (Arabidopsis thaliana) roots, indicating that the ARFs serve as a cross talk point between the two hormones. Both arf19 and arf7 mutants isolated from our forward genetic screens are auxin resistant and the arf19arf7 double mutant had stronger auxin resistance than the single mutants and displayed phenotypes not seen in the single mutants. Furthermore, we show that a genomic fragment of ARF19 not only complements arf19, but also rescues arf7. We conclude that ARF19 complements ARF7 at the protein level and that the ARF7 target sequences are also recognized by ARF19. Therefore, it is the differences in expression level/pattern and not the differences in protein sequences between the two ARFs that determines the relative contribution of the two ARFs in auxin signaling and plant development. In addition to being auxin resistant, arf19 has also ethylene-insensitive roots and ARF19 expression is induced by ethylene treatment. This work provides a sensitive genetic screen for uncovering auxin-resistant mutants including the described arf mutants. This study also provides a likely mechanism for coordination and integration of hormonal signals to regulate plant growth and development. 相似文献
5.
Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. 总被引:15,自引:0,他引:15 下载免费PDF全文
Activation of the plant defensin gene PDF1.2 in Arabidopsis by pathogens has been shown previously to be blocked in the ethylene response mutant ein2-1 and the jasmonate response mutant coi1-1. In this work, we have further investigated the interactions between the ethylene and jasmonate signal pathways for the induction of this defense response. Inoculation of wild-type Arabidopsis plants with the fungus Alternaria brassicicola led to a marked increase in production of jasmonic acid, and this response was not blocked in the ein2-1 mutant. Likewise, A. brassicicola infection caused stimulated emission of ethylene both in wild-type plants and in coi1-1 mutants. However, treatment of either ein2-1 or coi1-1 mutants with methyl jasmonate or ethylene did not induce PDF1.2, as it did in wild-type plants. We conclude from these experiments that both the ethylene and jasmonate signaling pathways need to be triggered concomitantly, and not sequentially, to activate PDF1.2 upon pathogen infection. In support of this idea, we observed a marked synergy between ethylene and methyl jasmonate for the induction of PDF1.2 in plants grown under sterile conditions. In contrast to the clear interdependence of the ethylene and jasmonate pathways for pathogen-induced activation of PDF1.2, functional ethylene and jasmonate signaling pathways are not required for growth responses induced by jasmonate and ethylene, respectively. 相似文献
6.
7.
Diego Lucero Ozan Dikilitas Michael M. Mendelson Zahra Aligabi Promotto Islam Edward B. Neufeld Aruna T. Bansal Lita A. Freeman Boris Vaisman Jingrong Tang Christian A. Combs Yuesheng Li Szilard Voros Iftikhar J. Kullo Alan T. Remaley 《Journal of lipid research》2022,63(1):100160
A significant proportion of patients with elevated LDL and a clinical presentation of familial hypercholesterolemia do not carry known genetic mutations associated with hypercholesterolemia, such as defects in the LDL receptor. To identify new genes involved in the cellular uptake of LDL, we developed a novel whole-genome clustered regularly interspaced short palindromic repeat-Cas9 KO screen in HepG2 cells. We identified transgelin (TAGLN), an actin-binding protein, as a potentially new gene involved in LDL endocytosis. In silico validation demonstrated that genetically predicted differences in expression of TAGLN in human populations were significantly associated with elevated plasma lipids (triglycerides, total cholesterol, and LDL-C) in the Global Lipids Genetics Consortium and lipid-related phenotypes in the UK Biobank. In biochemical studies, TAGLN-KO HepG2 cells showed a reduction in cellular LDL uptake, as measured by flow cytometry. In confocal microscopy imaging, TAGLN-KO cells had disrupted actin filaments as well as an accumulation of LDL receptor on their surface because of decreased receptor internalization. Furthermore, TAGLN-KO cells exhibited a reduction in total and free cholesterol content, activation of SREBP2, and a compensatory increase in cholesterol biosynthesis. TAGLN deficiency also disrupted the uptake of VLDL and transferrin, other known cargoes for receptors that depend upon clathrin-mediated endocytosis. Our data suggest that TAGLN is a novel factor involved in the actin-dependent phase of clathrin-mediated endocytosis of LDL. The identification of novel genes involved in the endocytic uptake of LDL may improve the diagnosis of hypercholesterolemia and provide future therapeutic targets for the prevention of cardiovascular disease. 相似文献
8.
9.
10.
Female gametophytic mutants of Arabidopsis thaliana identified in a gene trap insertional mutagenesis screen 总被引:1,自引:0,他引:1
Brukhin VB Jaciubek M Bolaños Carpio A Kuzmina V Grossniklaus U 《The International journal of developmental biology》2011,55(1):73-84
In plants, the male and female gametophytes represent the haploid generation that alternates with the diploid sporophytic generation. Male and female gametophytes develop from haploid micro- and megaspores, respectively. In flowering plants (angiosperms), the spores themselves arise from the sporophyte through meiotic divisions of sporogenous cells in the reproductive organs of the flower. Male and female gametophytes contain two pairs of gametes that participate in double fertilization, a distinctive feature of angiosperms. In this paper, we describe the employment of a transposon-based gene trap system to identify mutations affecting the gametophytic phase of the plant life cycle. Mutants affecting female gametogenesis were identified in a two-step screen for (i) reduced fertility (seed abortion or undeveloped ovules) and (ii) segregation ratio distortion. Non-functional female gametophytes do not initiate seed development, leading to semi-sterility such that causal or linked alleles are transmitted at reduced frequency to the progeny (non-Mendelian segregation). From a population of 2,511 transposants, we identified 54 lines with reduced seed set (2%). Examination of their distorted segregation ratios and seed phenotypes led to the isolation of 12 gametophytic mutants, six of which are described herein. Chromosomal sequences flanking the transposon insertions were identified and physically mapped onto the genome sequence of Arabidopsis thaliana. Surprisingly, the insertion sites were often associated with chromosomal rearrangements, making it difficult to assign the mutant phenotypes to a specific gene. The mutants were classified according to the process affected at the time of arrest, i.e. showing mitotic, karyogamic, maternal or degenerative phenotypes. 相似文献
11.
12.
13.
14.
15.
Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis 总被引:15,自引:0,他引:15 下载免费PDF全文
Anderson JP Badruzsaufari E Schenk PM Manners JM Desmond OJ Ehlert C Maclean DJ Ebert PR Kazan K 《The Plant cell》2004,16(12):3460-3479
16.
17.
Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis 总被引:1,自引:0,他引:1
Selenium (Se) is an essential element for many organisms, but excess Se is toxic. To better understand plant Se toxicity and resistance mechanisms, we compared the physiological and molecular responses of two Arabidopsis (Arabidopsis thaliana) accessions, Columbia (Col)-0 and Wassilewskija (Ws)-2, to selenite treatment. Measurement of root length Se tolerance index demonstrated a clear difference between selenite-resistant Col-0 and selenite-sensitive Ws-2. Macroarray analysis showed more pronounced selenite-induced increases in mRNA levels of ethylene- or jasmonic acid (JA)-biosynthesis and -inducible genes in Col-0 than in Ws-2. Indeed, Col-0 exhibited higher levels of ethylene and JA. The selenite-sensitive phenotype of Ws-2 was attenuated by treatment with ethylene precursor or methyl jasmonate (MeJA). Conversely, the selenite resistance of Col-0 was reduced in mutants impaired in ethylene or JA biosynthesis or signaling. Genes encoding sulfur (S) transporters and S assimilation enzymes were up-regulated by selenite in Col-0 but not Ws-2. Accordingly, Col-0 contained higher levels of total S and Se and of nonprotein thiols than Ws-2. Glutathione redox status was reduced by selenite in Ws-2 but not in Col-0. Furthermore, the generation of reactive oxygen species by selenite was higher in Col-0 than in Ws-2. Together, these results indicate that JA and ethylene play important roles in Se resistance in Arabidopsis. Reactive oxygen species may also have a signaling role, and the resistance mechanism appears to involve enhanced S uptake and reduction. 相似文献
18.
19.
20.
Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana 总被引:8,自引:0,他引:8
Hoth S Ikeda Y Morgante M Wang X Zuo J Hanafey MK Gaasterland T Tingey SV Chua NH 《FEBS letters》2003,554(3):373-380
Cytokinins have been implicated in developmental and growth processes in plants including cell division, chloroplast biogenesis, shoot meristem initiation and senescence. The regulation of these processes requires changes in cytokinin-responsive gene expression. Here, we induced the expression of a bacterial isopentenyl transferase gene, IPT, in transgenic Arabidopsis thaliana seedlings to study the regulation of genome-wide gene expression in response to endogenous cytokinin. Using MPSS (massively parallel signature sequencing) we identified 823 and 917 genes that were up- and downregulated, respectively, following 24 h of IPT induction. When comparing the response to cytokinin after 6 and 24 h, we identified different clusters of genes showing a similar course of regulation. Our study provides researchers with the opportunity to rapidly assess whether genes of interest are regulated by cytokinins. 相似文献