首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
MT II, agonist for MC3/4-Rs, inhibited Ghrelin's orexigenic effect in the paraventricular nucleus of the hypothalamus (PVN). To further investigate the role of the melanocortin system as mediator of ghrelin's orexigenic actions, we explored the involvement of AgRP in Ghrelin's orexigenic effect by testing the effect on food intake after their co-administration in the PVN, during the light and dark phases of feeding in rats. During both the phases of feeding, co-administration of Ghrelin with either AgRP 50 or AgRP 100 pmol into the PVN did not produce a synergistic effect on the food intake, suggesting that ghrelin induction of feeding occurs by recruiting Agrp as one of the obligatory mediators of its orexigenic effect.  相似文献   

2.
下丘脑室旁核的心血管调节功能研究进展   总被引:5,自引:0,他引:5  
下丘脑室旁核 (PVN)是自主性和内分泌性反应的重要整合中枢 ,且在维持心血管活动的动态平衡中起着关键作用。本文简要归纳了PVN的形态结构、纤维联系 ,并详细叙述其对心血管活动的调节及与心血管疾病的关系。  相似文献   

3.
4.
Orexins, also called hypocretins, are newly discovered hypothalamic peptides that are thought to be involved in various physiological functions. In spite of the fact that orexin receptors, especially orexin receptor 2, are abundant in the hypothalamic paraventricular nucleus (PVN), the effects of orexins on PVN neurons remain unknown. Using a whole cell patch-clamp recording technique, we investigated the effects of orexin-B on PVN neurons of rat brain slices. Bath application of orexin-B (0.01-1.0 microM) depolarized 80.8% of type 1 (n = 26) and 79.2% of type 2 neurons tested (n = 24) in the PVN in a concentration-dependent manner. The effects of orexin-B persisted in the presence of TTX (1 microM), indicating that these depolarizing effects were generated postsynaptically. Addition of Cd(2+) (1 mM) to artificial cerebrospinal fluid containing TTX (1 microM) significantly reduced the depolarizing effect in type 2 neurons. These results suggest that orexin-B has excitatory effects on the PVN neurons mediated via a depolarization of the membrane potential.  相似文献   

5.
Ventricular administration of urocortin (UCN) inhibits feeding, but specific site(s) of UCN action are unknown. In the current studies we examined the effect of UCN in the hypothalamic paraventricular nucleus (PVN) on feeding. We tested UCN administered into the PVN in several paradigms: deprivation-induced, nocturnal, and neuropeptide Y (NPY)-induced feeding. We compared the effect of equimolar doses of UCN and corticotrophin releasing hormone (CRH) on NPY-induced and nocturnal feeding, determined whether UCN in the PVN produced a conditioned taste aversion (CTA) and induced changes in c-Fos immunoreactivity (c-Fos-ir) after UCN and NPY administration in the PVN. UCN in the PVN significantly decreased NPY and nocturnal and deprivation-induced feeding at doses of 1, 10, and 100 pmol, respectively. UCN anorectic effects lasted longer than those attributed to CRH. Ten and thirty picomoles UCN did not induce a CTA, whereas 100 pmol UCN produced a CTA. UCN (100 pmol) in the PVN neither increased c-Fos-ir in any brain region assayed nor altered c-Fos-ir patterns resulting from PVN NPY administration. These data suggest the hypothalamic PVN as a site of UCN action.  相似文献   

6.
Female golden-mantled ground squirrels, maintained in an LD 14:10 photoperiod at 23 degrees C, sustained lesions of the paraventricular nucleus (PVN) or sham operations. Body weight and reproductive status were recorded weekly pre- and postoperatively. Bilateral lesions of the PVN did not eliminate, phase-shift, or otherwise disrupt the circannual rhythms of body mass or reproduction. Absolute levels of body weight were unaffected by PVN ablation. The PVN is not an essential component of the oscillatory system that generates circannual cycles in ground squirrels.  相似文献   

7.
Virgin, ovariectomized rats exposed to 2 wk of sequential estradiol (E(2)) and progesterone (P) followed by P withdrawal have increased hypothalamic oxytocin (OT) mRNA and peptide levels relative to sham-treated animals. This increase is prevented if P is sustained. In the central nervous system, P is metabolized to the neurosteroid allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one), which exerts effects by acting as a positive allosteric modulator of GABA(A) receptor/Cl(-)-channel complexes. In the present study, ovariectomized rats that received sequential E(2) and P for 2 wk followed by P withdrawal were administered allopregnanolone at the time of P withdrawal. Hypothalamic and plasma allopregnanolone concentrations, serum E(2) and P concentrations, and hypothalamic OT mRNA levels were measured at death. Steroid-induced increases in OT mRNA were attenuated in animals treated with allopregnanolone at the time of P withdrawal. The results suggest that allopregnanolone plays an important modulatory role in steroid-mediated increases in hypothalamic OT.  相似文献   

8.
Recent studies show that brain-derived neurotrophic factor (BDNF) decreases feeding and body weight after peripheral and ventricular administration. BDNF mRNA and protein, and its receptor tyrosine kinase B (TrkB) are widely distributed in the hypothalamus and other brain regions. However, there are few reports on specific brain sites of actions for BDNF. We evaluated the effect of BDNF in the hypothalamic paraventricular nucleus (PVN) on feeding. BDNF injected unilaterally or bilaterally into the PVN of food-deprived and nondeprived rats significantly decreased feeding and body weight gain within the 0- to 24-h and 24- to 48-h postinjection intervals. Effective doses producing inhibition of feeding behavior did not establish a conditioned taste aversion. PVN BDNF significantly decreased PVN neuropeptide Y (NPY)-induced feeding at 1, 2, and 4 h following injection. BDNF administration in the PVN abolished food-restriction-induced NPY gene expression in the hypothalamic arcuate nucleus. In conclusion, BDNF in the PVN significantly decreases food intake and body weight gain, suggesting that the PVN is an important site of action for BDNF in its effects on energy metabolism. Furthermore, BDNF appears to interact with NPY in its anorectic actions, although a direct effect on NPY remains to be established.  相似文献   

9.
The effects of bilateral lesions of the hypothalamic paraventricular nuclei (PVN), of rats with a mean weight of 260 g body, on eating habits and body weight, as well as on sympathetic nervous system (SNS) activity in interscapular brown adipose tissue (IBAT) were investigated. In 59 of 131 Sprague-Dawley female rats, PVN lesions resulted in hyperphagia and obesity. Although lesions were considered successful when more than 50% of the PVN was destroyed histologically, such lesions were observed in 35.9% (47/131) of all lesioned rats and all of these 47 rats were obese. Therefore, in this study, these 47 rats which were confirmed histologically, were designated as "PVN-lesioned rats". Plasma insulin levels in these 47 PVN-lesioned ats were more than double those of the controls. However, no significant differences were observed between plasma glucose levels in PVN-lesioned and control groups. Norepinephrine turnover, a reliable indicator of SNS activity, in IBAT, heart and pancreas was similar in PVN-lesioned and sham-operated control animals, even under contrasting conditions of feeding (ad libitum and fasting) and temperature (22 degrees C and 4 degrees C). It is concluded that PVN lesions produce hyperphagia, obesity and hyperinsulinemia in rats with an average body weight of 260g without affecting the SNS activity in IBAT, heart or pancreas.  相似文献   

10.
下丘脑室旁核内雌激素受体的表达与意义   总被引:3,自引:0,他引:3  
Luo D  Zhang JQ 《生理科学进展》2004,35(4):332-335
下丘脑室旁核 (paraventricularnucleus ,PVN)包括大细胞部、小细胞部和背侧帽部等几个部分 ,其中大细胞部主要合成催产素和加压素 ,小细胞部主要合成促肾上腺皮质激素释放激素、甘丙肽等多种神经肽。研究发现PVN的神经内分泌活动受到雌激素的调节 ,进而影响动物的分娩、摄食、脂肪代谢、体重增加等生理功能。雌激素有α和 β两种受体 (即ER α和ER β)。在不同种属动物的PNV内两种雌激素受体的表达水平不同 ,如大鼠PVN主要表达ER β ,而小鼠PVN内除了表达ER β以外也能表达少量ER α ,提示两种ER在不同动物的PVN内功能可能不同 ,它们单独或协同介导雌激素在PVN内参与多种肽能神经元有关的生理功能。  相似文献   

11.
Zhang JF  Zhang YM  Yan CD  Zhou XP 《Life sciences》2002,71(13):1501-1510
A rat model of gastric ischemia-reperfusion injury (GI-RI) was established by clamping the celiac artery for 30 min and allowing reperfusion for 1 h, on which the regulatory effect of the paraventricular nucleus (PVN) and its neural mechanisms were investigated. The results were: 1. Electrical stimulation of the PVN obviously attenuated the GI-RI. Microinjection of L-glutamic acid into PVN produced an effect similar to that of PVN stimulation. 2. Electrolytic ablation of the PVN aggravated the GI-RI. 3. Nucleus tractus solitarius (NTS) ablation could eliminate the protective effect of electrical stimulation of PVN on GI-RI. 4. Hypophysectomy did not alter the effect of electrical stimulation of PVN. 5. Vagotomy or sympathectomy both could increase the effect of PVN stimulation on GI-RI. These results indicate that the PVN participates in the development of GI-RI as a specific area in the CNS, exerting protective effects on the GI-RI. The NTS and vagus and sympathetic nerve may be involved in the regulative mechanism of PVN on GI-RI, but the PVN mechanism here is independent of the PVN-hypophyseal pathway.  相似文献   

12.
P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5′-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ± 13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow.  相似文献   

13.
The paraventricular nucleus (PVN) of the hypothalamus has critical homeostatic functions, including the regulation of fluid balance and sympathetic drive. It has been suggested that altered activity of this nucleus contributes to the progression of congestive heart failure (HF). We hypothesized that forebrain influences of the renin-angiotensin-aldosterone system augment the activity of PVN neurons in HF. The rate of PVN neurons (n = 68) from rats with ischemia-induced HF was higher than that of PVN neurons (n = 42) from sham-operated controls (8.7 +/- 0.8 vs. 2.7 +/- 0.3 spikes/s, P < 0.001, HF vs. SHAM). Forebrain-directed intracarotid artery injections of the angiotensin type 1 receptor antagonist losartan, the angiotensin-converting enzyme inhibitor captopril, and the mineralocorticoid receptor antagonist spironolactone all significantly (P < 0.05) reduced PVN neuronal activity in HF rats. These findings demonstrate that the renin-angiotensin-aldosterone system drives PVN neuronal activity in HF, likely resulting in increased sympathetic drive and volume accumulation. This mechanism of neurohumoral excitation in HF is accessible to manipulation by blood-borne therapeutic agents.  相似文献   

14.
15.
Peptidyl-glycine alpha-amidating monooxygenase (PAM) is a posttranslational processing enzyme which catalyzes the formation of biologically active alpha-amidated peptides. The two major neuropeptides involved in the regulation of ACTH secretion [CRF and arginine vasopressin (AVP)], synthesized in the parvocellular part of the hypothalamic paraventricular nucleus (PVN), are amidated, and their synthesis and/or release is negatively regulated by glucocorticoids. In this study, using in situ hybridization, we have shown that PAM mRNA is abundantly expressed in the hypothalamic paraventricular and supraoptic nucleus. Surgical adrenalectomy (ADX) induced increases in PAM, CRF, and AVP mRNA in the parvocellular part of the PVN, while corticosterone treatment normalized these values. PAM and AVP gene expression were not changed in the magnocellular part of the PVN or in the supraoptic nucleus. These observations suggest that in addition to stimulation of CRF and AVP synthesis, ADX induces an increase in PAM synthesis in the PVN and, thus, support the hypothesis of increased secretion of both CRF and AVP after ADX.  相似文献   

16.
Pain thresholds are increased following central administration of arginine vasopressin (AVP), an effect which appears not to be mediated through opioid analgesic processes. In addition to magnocellular projections to the posterior lobe of the pituitary gland and parvocellular projections to the zona externa of the median eminence, the paraventricular nucleus (PVN) of the hypothalamus contains VP parvocellular neurons which also project to extrahypothalamic structures involved in pain inhibition. The present study examined whether AVP analgesia as measured by the tail-flick test was altered in animals with lesions placed in the PVN at either 7 or 35 days after surgery. VP levels in the pons-medulla and the lumbo-sacral spinal cord were measured by radioimmunoassay, as well as VP-like immunoreactivity in the PVN and spinal cord with immunocytochemistry. Lesions placed in the PVN eliminated AVP analgesia on the tail-flick test at both 7 and 35 days after surgery, and decreased radioimmunoassayable VP by 59% in the lumbo-sacral spinal cord and 36% in the pons-medulla. The extent of the lesions ranged from complete destruction of the PVN to partial sparing of ventro-medial PVN cells with VP-like immunoreactivity. These data indicate that the PVN is a critical structure for the integrity of AVP analgesia.  相似文献   

17.
Yang J  Li P  Zhang XY  Zhang J  Hao F  Pan YJ  Lu GZ  Lu L  Wang DX  Wang G  Yan FL 《Peptides》2011,32(1):71-74
Arginine vasopressin (AVP), which is synthesized and secreted in the hypothalamic paraventricular nucleus (PVN), is the most important bioactive substance in the pain modulation. Our pervious study had shown that AVP plays an important role in pain modulation in caudate nucleus (CdN). The experiment was designed to investigate the source of AVP in CdN by the nucleus push-pull perfusion and radioimmunoassay. The results showed that: (1) pain stimulation increased the AVP concentration in the CdN perfusion liquid, (2) PVN decreased the effect of pain stimulation which was stronger in both sides than in one side of PVN cauterization; and (3) L-glutamate sodium would excited the PVN neurons by the PVN microinjection that could increase the AVP concentration in the CdN perfusion liquid. The data suggested that AVP in the CdN might come from the PVN in the pain process, i.e., AVP in the PVN might be transferred to the CdN to participate in the pain modulation.  相似文献   

18.
Wang R  Xiao L  Ma HJ  Zhang LH  He RR  Wu YM 《生理学报》2008,60(2):279-283
本文旨在研究白藜芦醇(resveratrol)对下丘脑脑片室旁核神经元放电的影响.应用玻璃微电极细胞外记录单位放电技术,在下丘脑脑片上观察白藜芦醇对静息状态下室旁核神经元放电的影响.结果如下:(1)在29张下丘脑脑片室旁核神经元放电单位给予白藜芦醇(O.05,0.5,5.0 μmol/L)2 min,有28张脑片(96.6%)放电频率显著降低,且呈剂量依赖性;(2)预先用0.2mmol/L的L.glutamate灌流8张下丘脑脑片,8张脑片(100%)放电频率显著增加,表现为癫痫样放电,该放电可被白藜芦醇(5.0 μmol/L)灌流2 min抑制:(3)预先用L型钙通道开放剂Bay K8644(0.1μmol/L)灌流8张下丘脑脑片,8张脑片(100%)放电频率显著增加,该放电可被白藜芦醇(5.0 μmol/L)灌流2 min抑制;(4)用一氧化氮合酶抑制剂Nω-nitro.L-arginine methyl ester(L-NAME)50μmol/L灌流8张下丘脑脑片,7张脑片(87.5%)放电频率显著增加,该放电可被白藜芦醇(5.0 μmol/L)灌流2 min抑制.以上结果提示,白藜芦醇抑制下丘脑室旁核神经元自发放电,可能通过降低心血管中枢的活动性而产生中枢保护作用.这种抑制作用可能与白藜芦醇抑制L型钙通道、减少钙内流有关,与NO释放无关.  相似文献   

19.
Summary Testosterone and corticosterone, administered in doses of 0.5 mg/day for two weeks to three-day-old male chickens, induced alterations in the distributional pattern and in the number of synapses in the rostral neuropil of the hypothalamic paraventricular nucleus. This avian nucleus is a target area for both above-mentioned hormones and also one of the most important centers involved in the regulation of behavioral patterns related to reproduction. Testosterone increased the number of synapses in the rostral paraventricular nucleus, while corticosterone altered their distributional pattern causing an increase in type-B terminals; according to morphological criteria the latter are regarded to represent aminergic endings. Similar results were induced by simultaneous administration of both testosterone and corticosterone. Precocious sexual behavior was also provoked by double treatment.Preliminary results have been presented on the occasion of the 5th ENA meeting (Liège, Belgique, Sept. 1981) and the 1st Italian Meeting of Cell Biology (Rimini, Italy, April 1982)This study was supported by CNR bilateral grants (82.00215.04 & 83.00492.04), MPI 40% and European Training Program in Brain and Behaviour Researchs (twinning grant)  相似文献   

20.
A H Swiergiel  G Peters 《Life sciences》1987,41(19):2251-2254
Single injections of noradrenaline (NA) into the hypothalamic paraventricular nucleus (PVN) initiate short bouts of eating in the rat. The effect of the injections of NA (40 nM) into the PVN on gnawing was studied in satiated male rats that had displayed a reliable eating response to NA. The NA injections produced numerous bouts of prolonged and vigorous gnawing of wood pieces shaped like food pellets. The gnawing response started 0.5-2 min after the injection of NA and lasted for 20-25 min. The results suggest that the increase in gnawing and eating evoked by NA might be related to facilitation of the oral responses, and a changed sensitivity to the food related stimuli, in addition to an intrinsic increase in appetite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号