首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the effect of the acute administration of gliclazide at 160 mg on insulin release during hyperglycaemic clamps in 12 type 2 diabetes patients, age 50 +/- 9.0 years, diabetes duration 5.5 +/- 4.8 years, fasting blood glucose 9.6 +/- 2.1 mmol/L (means +/- SD). After a 210 min of hyperinsulinaemic euglycaemic clamp (blood glucose 4.6 +/- 0.14mmol/L), gliclazide or placebo (randomised, double-blind, cross-over) was administered; 60 minutes later, a hyperglycaemic clamp (4hr) at 8mmol/L was started. Plasma C-peptide levels increased significantly after the administration of gliclazide (increment 0.17 +/- 0.15 vs. 0.04 +/- 0.07 nmol/L, p = 0.024) before the clamp. After the start of the hyperglycaemic clamp, the areas under the curve (AUC) for insulin and C-peptide did not differ from 0-10 min (first phase) with gliclazide. However, second-phase insulin release (30-240 min) was markedly enhanced by gliclazide. AUC plasma insulin (30 to 240 min) was statistically significantly higher after gliclazide (12.3 +/- 13.9 vs. -0.56 +/- 9.4 nmol/L x 210 min, p = 0.022); similarly, AUC plasma C-peptide (30 to 240 min) was also higher: 128 +/- 62 vs. 63 +/- 50 nmol/L x 210 min, p = 0.002). In conclusion, in long-standing type 2 diabetes the acute administration of gliclazide significantly enhances second phase insulin release at a moderately elevated blood glucose level. In contrast to previous findings in mildly diabetic subjects, these 12 type 2 diabetes patients who had an inconsiderable first phase insulin release on the placebo day, only showed an insignificant increase in first phase with gliclazide.  相似文献   

2.
BackgroundPrevious research demonstrated that a high dose of phlorizin-rich apple extract (AE) can markedly inhibit early-phase postprandial glycemia, but efficacy of lower doses of the AE is unclear.ObjectiveTo determine whether lower AE doses reduce early-phase postprandial glycemia in healthy adults and investigate mechanisms.DesignIn a randomized, controlled, double-blinded, cross-over acute trial, drinks containing 1.8 g (HIGH), 1.35 g (MED), 0.9 g (LOW), or 0 g (CON) of a phlorizin-rich AE were consumed before 75 g starch/sucrose meal. Postprandial blood glucose, insulin, C-peptide, glucose-dependent insulinotropic polypeptide (GIP) and polyphenol metabolites concentrations were measured 0–240 min, acetaminophen concentrations to assess gastric emptying rate, and 24 h urinary glucose excretion. Effects of AE on intestinal glucose transport were investigated in Caco-2/TC7 cells.ResultsAE significantly reduced plasma glucose iAUC 0–30 min at all doses: mean differences (95% CI) relative to CON were −15.6 (−23.3, −7.9), −11.3 (−19.6, −3.0) and −8.99 (−17.3, −0.7) mmol/L per minute for HIGH, MEDIUM and LOW respectively, delayed Tmax (HIGH, MEDIUM and LOW 45 min vs. CON 30 min), but did not lower Cmax. Similar dose-dependent treatment effects were observed for insulin, C-peptide, and GIP. Gastric emptying rates and urinary glucose excretion did not differ. Serum phloretin, quercetin and epicatechin metabolites were detected postprandially. A HIGH physiological AE dose equivalent decreased total glucose uptake by 48% in Caco-2/TC7 cells.ConclusionsPhlorizin-rich AE, even at a low dose, can slightly delay early-phase glycemia without affecting peak and total glycemic response.  相似文献   

3.
To understand the day-to-day pathophysiology of impaired muscle glycogen storage in type 2 diabetes, glycogen concentrations were measured before and after the consumption of sequential mixed meals (breakfast: 190.5 g carbohydrate, 41.0 g fat, 28.8 g protein, 1253 kcal; lunch: 203.3 g carbohydrate, 48.1 g fat, 44.0 g protein, 1497.5 kcal) by use of natural abundance (13)C magnetic resonance spectroscopy. Subjects with diet-controlled type 2 diabetes (n = 9) and age- and body mass index-matched nondiabetic controls (n = 9) were studied. Mean fasting gastrocnemius glycogen concentration was significantly lower in the diabetic group (57.1 +/- 3.6 vs. 68.9 +/- 4.1 mmol/l; P < 0.05). After the first meal, mean glycogen concentration in the control group rose significantly from basal (97.1 +/- 7.0 mmol/l at 240 min; P = 0.005). After the second meal, the high level of muscle glycogen concentration in the control group was maintained, with a further rise to 108.0 +/- 11.6 mmol/l by 480 min. In the diabetic group, the postprandial rise was markedly lower than that of the control group (65.9 +/- 5.2 mmol/l at 240 min, P < 0.005, and 70.8 +/- 6.7 mmol/l at 480 min, P = 0.01) despite considerably greater serum insulin levels (752.0 +/- 109.0 vs. 372.3 +/- 78.2 pmol/l at 300 min, P = 0.013). This was associated with a significantly greater postprandial hyperglycemia (10.8 +/- 1.3 vs. 5.3 +/- 0.2 mmol/l at 240 min, P < 0.005). Basal muscle glycogen concentration correlated inversely with fasting blood glucose (r = -0.55, P < 0.02) and fasting serum insulin (r = -0.57, P < 0.02). The increment in muscle glycogen correlated with initial increment in serum insulin only in the control group (r = 0.87, P < 0.002). This study quantitates for the first time the subnormal basal muscle glycogen concentration and the inadequate glycogen storage after meals in type 2 diabetes.  相似文献   

4.
The insulinotropic intestinal hormone GLP-1 is thought to exert one of its effects by direct action on the pancreatic beta-cell receptors. GLP-1 is rapidly degraded in plasma, such that only a small amount of the active form reaches the pancreas, making it questionable whether this amount is sufficient to produce a direct incretin effect. The aim of our study was to assess, in a dog model, the putative incretin action of GLP-1 acting directly on the beta-cell in the context of postprandial rises in GLP-1 and glucose. Conscious dogs were fed a high-fat, high-carbohydrate meal, and insulin response was measured. We also infused systemic glucose plus GLP-1, or glucose alone, to simulate the meal test values of these variables and measured insulin response. The results were as follows: during the meal, we measured a robust insulin response (52 +/- 9 to 136 +/- 14 pmol/l, P < 0.05 vs. basal) with increases in portal glucose and GLP-1 but only limited increases in systemic glucose (5.3 +/- 0.1 to 5.7 +/- 0.1 mmol/l, P = 0.1 vs. basal) and GLP-1 (6 +/- 0 to 9 +/- 1 pmol/l, P = 0.5 vs. basal). Exogenous infusion of systemic glucose and GLP-1 produced a moderate increase in insulin (43 +/- 5 to 84 +/- 15 pmol/l, 43% of the meal insulin). However, infusion of glucose alone, without GLP-1, produced a similar insulin response (37 +/- 6 to 82 +/- 14 pmol, 53% of the meal insulin, P = 0.7 vs. glucose and GLP-1 infusion). In conclusion, in dogs with postprandial rises in systemic glucose and GLP-1, the hormone might not have a direct insulinotropic effect and could regulate glycemia via indirect, portohepatic-initiated neural mechanisms.  相似文献   

5.
To test the hypothesis that intrahepatic availability of fatty acid could modify the rate of suppression of endogenous glucose production (EGP), acipimox or placebo was administered before and during a test meal. We used a modified isotopic methodology to measure EGP in 11 healthy subjects, and (1)H magnetic resonance spectroscopic measurement of hepatic triglyceride stores was also undertaken. Acipimox suppressed plasma free fatty acids markedly before the meal (0.05 +/- 0.01 mmol/l at -10 min, P = 0) and throughout the postprandial period (0.03 +/- 0.01 mmol/l at 150 min). Mean peak plasma glucose was significantly lower after the meal on acipimox days (8.9 +/- 0.4 vs. 10.1 +/- 0.5 mmol/l, P < 0.01), as was mean peak serum insulin (653.1 +/- 99.9 vs. 909 +/- 118 pmol/l, P < 0.01). Fasting EGP was similar (11.15 +/- 0.58 micromol.kg(-1).min(-1) placebo vs. 11.17 +/- 0.89 mg.kg(-1).min(-1) acipimox). The rate of suppression of EGP after the meal was almost identical on the 2 test days (4.36 +/- 1.52 vs. 3.69 +/- 1.21 micromol.kg(-1).min(-1) at 40 min). There was a significant negative correlation between the acipimox-induced decrease in peak plasma glucose and liver triglyceride content (r = -0.827, P = 0.002), suggesting that, when levels of liver fat were low, inhibition of lipolysis was able to affect glucose homeostasis. Acute pharmacological sequestration of fatty acids in triglyceride stores improves postprandial glucose homeostasis without effect on the immediate postprandial suppression of EGP.  相似文献   

6.
Postprandial glycemic responses to meals are inhibited by polyphenol-rich plant foods. Combinations of polyphenols may be particularly effective through complementary mechanisms. A randomized, controlled, double-blinded cross-over trial was conducted in healthy volunteers to test the hypothesis that apple and blackcurrant polyphenol-rich drinks would reduce postprandial blood glucose concentrations. Secondary outcomes included insulin and glucose-dependent insulinotropic polypeptide (GIP) secretion. Twenty men (mean age 26 y, SD 8) and 5 postmenopausal women (mean age 57 y, SD 3) consumed a placebo drink (CON) and 2 polyphenol-rich drinks containing fruit extracts: either 1200 mg apple polyphenols (AE), or 600 mg apple polyphenols+600 mg blackcurrant anthocyanins (AE+BE), in random order with a starch and sucrose meal. Incremental areas under the curve (iAUC) for plasma glucose concentrations were lower following AE+BE over 0–30 and 0–120 min compared with CON; mean differences (95% CI) −32 mmol/L·min (−41, −22, P<.0005) and −52 mmol/L min (−94, −9, P<.05), respectively. AE significantly reduced iAUC 0–30 min (mean difference −26 mmol/L min, −35, −18, P<.0005) compared with CON, but the difference over 120 min was not significant. Postprandial insulin, C-peptide and GIP concentrations were significantly reduced relative to CON. A dose response inhibition of glucose transport was demonstrated in Caco-2 cells, including total and GLUT-mediated transport, and SGLT1-mediated glucose transport was strongly inhibited at all doses in Xenopus oocytes, following 10 min incubation with 0.125–4 mg apple polyphenols/ml. In conclusion, ingestion of apple and blackcurrant polyphenols decreased postprandial glycemia, which may be partly related to inhibition of intestinal glucose transport.  相似文献   

7.
The aim of this study was to determine the effects of insulin infusion on oxidative stress induced by acute changes in glycemia in non-stressed hereditary hypertriglyceridemic rats (hHTG) and Wistar (control) rats. Rats were treated with glucose and either insulin or normal saline infusion for 3 hours followed by 90 min of hyperglycemic (12 mmol/l) and 90 min of euglycemic (6 mmol/l) clamp. Levels of total glutathione (GSH), oxidized glutathione (GSSG) and total antioxidant capacity (AOC) were determined to assess oxidative stress. In steady states of each clamp, glucose infusion rate (GIR) was calculated for evaluation of insulin sensitivity. GIR (mg.kg(-1).min(-1)) was significantly lower in hHTG in comparison with Wistar rats; 25.46 (23.41 - 28.45) vs. 36.30 (27.49 - 50.42) on glycemia 6 mmol/l and 57.18 (50.78 - 60.63) vs. 68.00 (63.61 - 85.92) on glycemia 12 mmol/l. GSH/GSSG ratios were significantly higher in hHTG rats at basal conditions. Further results showed that, unlike in Wistar rats, insulin infusion significantly increases GSH/GSSG ratios in hHTG rats: 10.02 (9.90 - 11.42) vs. 6.01 (5.83 - 6.43) on glycemia 6 mmol/l and 7.42 (7.15 - 7.89) vs. 6.16 (5.74 - 7.05) on glycemia 12 mmol/l. Insulin infusion thus positively influences GSH/GSSG ratio and that way reduces intracellular oxidative stress in insulin-resistant animals.  相似文献   

8.
Gastric emptying is a determinant of the postprandial glycemic and cardiovascular responses to oral carbohydrate. We evaluated the effects of a solid meal on gastric emptying and the glycemic and cardiovascular responses to oral glucose in healthy older subjects. Ten subjects aged 72.1 +/- 1.9 yr were studied. Each subject had measurements of gastric emptying, blood glucose, serum insulin, blood pressure, and heart rate after ingestion of a 50-g glucose drink (300 ml) with (mixed meal) or without (liquid only) a solid meal (300 g ground beef). Gastric emptying of liquid was initially slightly more rapid (P < 0.05) after the mixed meal compared with liquid only at 5 min (92.0 +/- 1.5 vs. 96.0 +/- 1.3%) and much slower (P < 0.05) after 120 min. The time to peak blood glucose was less (39.0 +/- 4.0 vs. 67.5 +/- 10.3 min; P < 0.01) and blood glucose subsequently lower (P < 0.01) after the mixed meal. The increase in serum insulin was greater (P < 0.001) after the mixed meal. Blood pressure fell (P < 0.05) in the first 30 min, with no difference between the two meals. Increase in heart rate after both meals (P < 0.005), was greater (P < 0.05) after the mixed meal. The presence of a noncarbohydrate solid meal had discrepant effects on early and subsequent emptying of a nutrient liquid, which affects postprandial glycemia and increased heart rate.  相似文献   

9.
The aim of this study was to evaluate the contribution of insulin processing to the improved meal-related B-cell function previously shown with the DPP-4 inhibitor vildagliptin. Fifty-five patients with type 2 diabetes (56.5+/-1.5 years; BMI=29.6+/-0.5 kg/m(2); FPG=9.9+/-0.2 mmol/l; HbA1c=7.7+/-0.1 %) were studied: 29 patients were treated with vildagliptin and 26 patients with placebo, both added to an ongoing metformin regimen (1.5-3.0 g/day). A standardized breakfast was given at baseline and after 52 weeks of treatment, and proinsulin related to insulin secretion was measured with C-peptide in the fasting and postprandial (over 4 h post-meal) states to evaluate B-cell function. The between-treatment difference (vildagliptin-placebo) in mean change from baseline in fasting proinsulin to C-peptide ratio (fastP/C) was -0.007+/-0.009 (p=0.052). Following the standard breakfast, 52 weeks of treatment with vildagliptin significantly decreased the dynamic proinsulin to C-peptide ratio (dynP/C) relative to placebo by 0.010+/-0.008 (p=0.037). Importantly, when the P/C was expressed in relation to the glucose stimulus (i.e., the fasting glucose and glucose AUC(0-240 min), respectively), the P/C relative to glucose was significantly reduced with vildagliptin vs. placebo, both in the fasting state (p=0.023) and postprandially (p=0.004). In conclusion, a more efficient B-cell insulin processing provides further evidence that vildagliptin treatment ameliorates abnormal B-cell function in patients with type 2 diabetes.  相似文献   

10.
Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen healthy volunteers were studied with intravenous infusion of GLP-1-(7-36) amide, GLP-1-(9-36) amide, or placebo over 390 min. After 30 min, a solid test meal was served, and gastric emptying was assessed. Blood was drawn for GLP-1 (total and intact), glucose, insulin, C-peptide, and glucagon measurements. Administration of GLP-1-(7-36) amide and GLP-1-(9-36) amide significantly raised total GLP-1 plasma levels. Plasma concentrations of intact GLP-1 increased to 21 +/- 5 pmol/l during the infusion of GLP-1-(7-36) amide but remained unchanged during GLP-1-(9-36) amide infusion [5 +/- 3 pmol/l; P < 0.001 vs. GLP-1-(7-36) amide administration]. GLP-1-(7-36) amide reduced fasting and postprandial glucose concentrations (P < 0.001) and delayed gastric emptying (P < 0.001). The GLP-1 metabolite had no influence on insulin or C-peptide concentrations. Glucagon levels were lowered by GLP-1-(7-36) amide but not by GLP-1-(9-36) amide. However, the postprandial rise in glycemia was reduced significantly (by approximately 6 mg/dl) by GLP-1-(9-36) amide (P < 0.05). In contrast, gastric emptying was completely unaffected by the GLP-1 metabolite. The GLP-1 metabolite lowers postprandial glycemia independently of changes in insulin and glucagon secretion or in the rate of gastric emptying. Most likely, this is because of direct effects on glucose disposal. However, the glucose-lowering potential of GLP-1-(9-36) amide appears to be small compared with that of intact GLP-1-(7-36) amide.  相似文献   

11.
Extracts of leaves from the plant Stevia rebaudiana Bertoni have been used in the traditional treatment of diabetes in Paraguay and Brazil. Recently, we demonstrated a direct insulinotropic effect in isolated mouse islets and the clonal beta cell line INS-1 of the glycoside stevioside that is present in large quantity in these leaves. Type 2 diabetes is a chronic metabolic disorder that results from defects in both insulin and glucagon secretion as well as insulin action. In the present study we wanted to unravel if stevioside in vivo exerts an antihyperglycaemic effect in a nonobese animal model of type 2 diabetes. An i.v. glucose tolerance test (IVGT) was carried out with and without stevioside in the type 2 diabetic Goto-Kakizaki (GK) rat, as well as in the normal Wistar rat. Stevioside (0.2 g/kg BW) and D-glucose (2.0 g/kg BW) were administered as i.v. bolus injections in anaesthetized rats. Stevioside significantly suppressed the glucose response to the IVGT in GK rats (incremental area under the curve (IAUC): 648 +/- 50 (stevioside) vs 958 +/- 85 mM x 120 min (control); P < 0.05) and concomitantly increased the insulin response (IAUC: 51116 +/- 10967 (stevioside) vs 21548 +/- 3101 microU x 120 min (control); P < 0.05). Interestingly, the glucagon level was suppressed by stevioside during the IVGT, (total area under the curve (TAUC): 5720 +/- 922 (stevioside) vs 8713 +/- 901 pg/ml x 120 min (control); P < 0.05). In the normal Wistar rat stevioside enhanced insulin levels above basal during the IVGT (IAUC: 79913 +/- 3107 (stevioside) vs 17347 +/- 2882 microU x 120 min (control); P < 0.001), however, without altering the blood glucose response (IAUC: 416 +/- 43 (stevioside) vs 417 +/- 47 mM x 120 min (control)) or the glucagon levels (TAUC: 5493 +/- 527 (stevioside) vs 5033 +/- 264 pg/ml x 120 min (control)). In conclusion, stevioside exerts antihyperglycaemic, insulinotropic, and glucagonostatic actions in the type 2 diabetic GK rat, and may have the potential of becoming a new antidiabetic drug for use in type 2 diabetes.  相似文献   

12.
We examined the contributions of insulin secretion, glucagon suppression, splanchnic and peripheral glucose metabolism, and delayed gastric emptying to the attenuation of postprandial hyperglycemia during intravenous exenatide administration. Twelve subjects with type 2 diabetes (3 F/9 M, 44 +/- 2 yr, BMI 34 +/- 4 kg/m2, Hb A(1c) 7.5 +/- 1.5%) participated in three meal-tolerance tests performed with double tracer technique (iv [3-3H]glucose and oral [1-14C]glucose): 1) iv saline (CON), 2) iv exenatide (EXE), and 3) iv exenatide plus glucagon (E+G). Acetaminophen was given with the mixed meal (75 g glucose, 25 g fat, 20 g protein) to monitor gastric emptying. Plasma glucose, insulin, glucagon, acetaminophen concentrations and glucose specific activities were measured for 6 h post meal. Post-meal hyperglycemia was markedly reduced (P < 0.01) in EXE (138 +/- 16 mg/dl) and in E+G (165 +/- 12) compared with CON (206 +/- 15). Baseline plasma glucagon ( approximately 90 pg/ml) decreased by approximately 20% to 73 +/- 4 pg/ml in EXE (P < 0.01) and was not different from CON in E+G (81 +/- 2). EGP was suppressed by exenatide [231 +/- 9 to 108 +/- 8 mg/min (54%) vs. 254 +/- 29 to189 +/- 27 mg/min (26%, P < 0.001, EXE vs. CON] and partially reversed by glucagon replacement [247 +/- 15 to 173 +/- 18 mg/min (31%)]. Oral glucose appearance was 39 +/- 4 g in CON vs. 23 +/- 6 g in EXE (P < 0.001) and 15 +/- 5 g in E+G, (P < 0.01 vs. CON). The glucose retained within the splanchnic bed increased from approximately 36g in CON to approximately 52g in EXE and to approximately 60g in E+G (P < 0.001 vs. CON). Acetaminophen((AUC)) was reduced by approximately 80% in EXE vs. CON (P < 0.01). We conclude that exenatide infusion attenuates postprandial hyperglycemia by decreasing EGP (by approximately 50%) and by slowing gastric emptying.  相似文献   

13.
We examined the extent to which priming the liver with a pulse of Humulin or the insulin analog hexyl-insulin monoconjugate 2 (HIM2) reduces postprandial hyperglycemia. Somatostatin (0.5 microg.kg(-1).min(-1)) was given with basal intraportal insulin and glucagon for 4.5 h into three groups of 42-h-fasted conscious dogs. From 0-5 min, group 1 (BI, n = 6) received saline, group 2 (HI, n = 6) received a Humulin pulse (10 mU.kg(-1).min(-1)), and group 3 (HIM2, n = 6) received a HIM2 pulse (10 mU.kg(-1).min(-1)). Duodenal glucose was infused (5.0 mg.kg(-1).min(-1)) from 15 to 270 min. Arterial insulin in BI remained basal (6 +/- 1 microU/ml) and peaked at 52 +/- 15 (HI) and 164 +/- 44 microU/ml (HIM2) and returned to baseline by 30 and 60 min, respectively. Arterial plasma glucose plateaued at 265 +/- 20, 214 +/- 15, and 193 +/- 14 mg/dl in BI, HI, and HIM2. Glucose absorption was similar in all groups. Significant net hepatic glucose uptake occurred at 85, 55, and 25 min in BI, HI, and HIM2, respectively. Nonhepatic glucose clearance at 270 min differed among groups (BI, HI, HIM2): 0.62 +/- 0.11, 0.76 +/- 0.26, and 1.61 +/- 0.29 ml.kg(-1).min(-1) (P < 0.05). A brief (5-min) insulin pulse improved postprandial glycemia, stimulating hepatic glucose uptake and prolonging enhancement of nonhepatic glucose clearance. HIM2 was more effective than Humulin, perhaps because its lowered clearance caused higher levels at the liver and periphery and its biological activity was not reduced proportionally to its decreased clearance.  相似文献   

14.
Postprandial blood glucose and insulin levels are both risk factors for developing obesity, type-2 diabetes, and coronary heart diseases. To date, research has shown that a single bout of moderate- to high-intensity aerobic exercise performed 相似文献   

15.
The effects of exercise training on glucose-stimulated insulin secretion (GSIS) were studied in male Sprague-Dawley rats made mildly to severely diabetic by partial pancreatectomy. Exercise trained (10 wk treadmill; T) and untrained (Unt) rats were grouped according to posttraining fed-state hyperglycemia as follows: T less than 200 and Unt less than 200 (glucose concn less than 200 mg/dl), T 200-300 and Unt 200-300 (glucose concn 200-300 mg/dl), and T greater than 300 and Unt greater than 300 (glucose concn greater than 300 mg/dl). After exercise training, hyperglycemic glucose clamps were performed in awake rats by elevation of arterial blood glucose concentration 126 mg/dl above fasting basal levels for 90 min. Exercise training significantly increased muscle citrate synthase activity. Prevailing hyperglycemia was reduced during the 10-wk exercise training period in all T rats with fed-state glucose concentrations less than 300, and only 53% of Unt rats in these groups had reduced glycemia. GSIS was significantly higher in T less than 200 [2.4 +/- 0.7 (SD) ng/ml at 90 min] than in Unt less than 200 (1.5 +/- 0.3). A similar response was found for T 200-300 (1.1 +/- 0.3 ng/dl) vs. Unt 200-300 (0.7 +/- 0.1) but not T greater than 300 (0.36 +/- 0.2) vs Unt greater than 300 (0.44 +/- 0.05). Sham-operated control rats had insulin concentrations of 6.6 +/- 1.6 ng/ml at the 90th min of the clamp. Acute exercise reduced fed-state glycemia in rats with mild-to-moderate (less than 300 mg/dl) diabetes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
OBJECTIVES: The aim of this study was to examine hormonal counterregulation during insulin-induced hypoglycemia in type-1 diabetic patients during long-term near normoglycemic insulin therapy and intensive clinical care. METHODS: Type-1 diabetic patients (age 35.3 +/- 2 years, body mass index 22.8 +/- 1 kg x m(-2), mean diabetes duration 13.6 (11-17 years), mean HbA1c during the last year 6.6 +/- 0.1%) and nondiabetic subjects were studied during (0-120 min) and after (120-240 min) hypoglycemic (3.05 mmol/l) hyperinsulinemic (approximately 330 pmol/l) clamp tests. RESULTS: During hypoglycemia peak plasma concentrations of glucagon (199 +/- 16 vs. 155 +/- 11 ng/l, p < 0.05), epinephrine (4,514 +/- 644 vs. 1,676 +/- 513 pmol/l, p < 0.001), norepinephrine (2.21 +/- 0.14 vs. 1.35 +/- 0.19 nmol/l, p < 0.01) and cortisol (532 +/- 44 vs. 334 +/- 61 nmol/l) were reduced in the diabetic patients. Plasma lactate did not change from baseline values (0.51 +/- 0.06 mmol/l) in diabetic but doubled in healthy subjects (1.13 +/- 0.111 mmol/l, p < 0.001 vs. control). During the posthypoglycemic recovery period plasma concentrations of free fatty acids were higher in diabetic patients at 240 min (1.34 +/- 0.12 vs. 2.01 +/- 0.23 mmol/l, p < 0.05). CONCLUSION: Despite long-term near physiologic insulin substitution and the low incidence of hypoglycemia, hormonal hypoglycemia counterregulation was impaired in type-1 diabetic patients after a diabetes duration of more than 10 years.  相似文献   

17.
A number of reports suggest that shift workers have an increased risk of coronary heart disease (CHD). One contributing factor may be the consumption of meals at night with consequent altered postprandial responses. This study investigated circulating triacylglycerol (TAG), a possible risk factor for CHD, after meals during a simulated day and night shift. Twenty-five healthy participants (10 women and 15 men) were studied. They were given a pre-meal at 0800 h and a test meal at 1330 h on a simulated day shift and then an identical pre-meal at 2000 h and test meal at 0130 h, respectively, on a simulated night shift with maintained wakefulness. Blood was sampled for 9 h after the test meal for analysis of basal and postprandial plasma TAG levels. ANOVA for repeated measures indicated higher TAG in men compared with women (p < 0.0001) and higher responses at night in both genders (p = 0.027). Incremental area under the curve (IAUC) analysis indicated that men had significantly increased postprandial TAG levels at night compared with the day: (IAUC 0-540 min, mean +/- SEM) 253.29 +/- 28.73 versus 148.33 +/- 17.28 mmol/L x min, respectively, p = 0.025. In women, night and day responses (61.16 +/- 8.93 versus 34.09 +/- 7.87 mmol/L x min, respectively, p = 0.457) were not significantly different. Circulating TAG remained elevated for longer at night in the men compared with the women (p = 0.009). This study demonstrates the existence of gender and time-of-day differences in TAG responses to a meal. These raised TAG levels at night, for a prolonged time in men, may be relevant to the increased risk of CHD in shift workers.  相似文献   

18.
Exenatide is a long-acting glucagon-like peptide-1 (GLP-1) mimetic used in the treatment of type 2 diabetes. There is increasing evidence that GLP-1 can influence glycemia not only via pancreatic (insulinotropic and glucagon suppression) and gastric-emptying effects, but also via an independent mechanism mediated by portal vein receptors. The aim of our study was to investigate whether exenatide has an islet- and gastric-independent glycemia-reducing effect, similar to GLP-1. First, we administered mixed meals, with or without exenatide (20 microg sc) to dogs. Second, to determine whether exenatide-induced reduction in glycemia is independent of slower gastric emptying, in the same animals we infused glucose intraportally (to simulate meal test glucose appearance) with exenatide, exenatide + the intraportal GLP-1 receptor antagonist exendin-(9-39), or saline. Exenatide markedly decreased postprandial glucose: net 0- to 135-min area under the curve = +526 +/- 315 and -536 +/- 197 mg.dl(-1).min(-1) with saline and exenatide, respectively (P < 0.05). Importantly, the decrease in plasma glucose occurred without a corresponding increase in postprandial insulin but was accompanied by delayed gastric emptying and lower glucagon. Significantly lower glycemia was induced by intraportal glucose infusion with exenatide than with saline (92 +/- 1 vs. 97 +/- 1 mg/dl, P < 0.001) in the absence of hyperinsulinemia or glucagon suppression. The exenatide-induced lower glycemia was partly reversed by intraportal exendin-(9-39): 95 +/- 3 and 92 +/- 3 mg/dl with exenatide + antagonist and exenatide, respectively (P < 0.01). Our results suggest that, similar to GLP-1, exenatide lowers glycemia via a novel mechanism independent of islet hormones and slowing of gastric emptying. We hypothesize that receptors in the portal vein, via a neural mechanism, increase glucose clearance independent of islet hormones.  相似文献   

19.
Changes in (45)Ca uptake and insulin secretion in response to glucose, leucine, and arginine were measured in isolated islets derived from 4-week-old rats born of mothers maintained with normal protein (NP, 17%) or low protein (LP, 6%) diet during pregnancy and lactation. Glucose provoked a dose-dependent stimulation of insulin secretion in both groups of islets, with basal (2.8 mmol/L glucose) and maximal release (27.7 mmol/L glucose) significantly reduced in LP compared with NP islets. In the LP group the concentration-response curve to glucose was shifted to the right compared with the NP group, with the half-maximal response occurring at 16.9 and 13.3 mmol/L glucose, respectively. In LP islets, glucose-induced first and second phases of insulin secretions were drastically reduced. In addition, insulin response to individual amino acids, or in association with glucose, was also significantly reduced in the LP group compared with NP islets. Finally, in LP islets the (45)Ca uptake after 5 minutes or 90 minutes of incubation (which reflect mainly the entry and retention, respectively, of Ca(2+)), was lower than in NP islets. These data indicate that in malnourished rats both initial and sustained phases of insulin secretion in response to glucose were reduced. This poor secretory response to nutrients seems to be the consequence of an altered Ca(2+) handling by malnourished islet cells.  相似文献   

20.
Glucocorticoids hypersensitivity may be involved in the development of abdominal obesity and insulin resistance. Eight normal weight and eight obese women received on two occasions a 3-h intravenous infusion of saline or hydrocortisone (HC) (1.5 microg x kg(-1) x min(-1)). Plasma cortisol, insulin, and glucose levels were measured every 30 min from time(-30) (min) (time(-30)) to time(240). Free fatty acids, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were measured at time(-30), time(180), and time(240). At time(240), subjects underwent an insulin tolerance test to obtain an index of insulin sensitivity (K(ITT)). Mean(30-240) cortisol level was similar in control and obese women after saline (74 +/- 16 vs. 75 +/- 20 microg/l) and HC (235 +/- 17 vs. 245 +/- 47 microg/l). The effect of HC on mean(180-240) insulin, mean(180-240) insulin resistance obtained by homeostasis model assessment (HOMA-IR), and K(ITT) was significant in obese (11.4 +/- 2.0 vs. 8.2 +/- 1.3 mU/l, P < 0.05; 2.37 +/- 0.5 vs. 1.64 +/- 0.3, P < 0.05; 2.81 +/- 0.9 vs. 3.32 +/- 1.02%/min, P < 0.05) but not in control women (3.9 +/- 0.6 vs. 2.8 +/- 0.5 mU/l; 0.78 +/- 0.1 vs. 0.49 +/- 0.1; 4.36 +/- 1.1 vs. 4.37 +/- 1.2%/min). In the whole population, the quantity of visceral fat, estimated by computerized tomography scan, was correlated with the increment of plasma insulin and HOMA-IR during HC infusion [Delta mean(30-240) insulin (r = 0.61, P < 0.05), Delta mean(30-240) HOMA-IR (r = 0.66, P < 0.01)]. The increase of PAI-1 between time(180) and time(240) after HC was higher in obese women (+25%) than in controls (+12%) (P < 0.05), whereas no differential effect between groups was observed for free fatty acids or adiponectin. A moderate hypercortisolism, equivalent to that induced by a mild stress, has more pronounced consequences on insulin sensitivity in abdominally obese women than in controls. These deleterious effects are correlated with the amount of visceral fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号