首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Because elevated ubiquitin ligase atrogin-1/MAFbx and MuRF1 mediate skeletal muscle wasting associated with various catabolic conditions, the signaling pathways involved in the upregulation of these genes under pathological conditions are considered therapeutic targets. AKT and NF-kappaB have been previously shown to regulate the expression of atrogin-1/MAFbx or MuRF1, respectively. In addition, we recently found that p38 MAPK mediates TNF-alpha upregulation of atrogin-1/MAFbx expression, suggesting that multiple signaling pathways mediate muscle wasting in inflammatory diseases. To date, however, these advances have not resulted in a practical clinical intervention for disease-induced muscle wasting. In the present study, we tested the effect of curcumin--a non-toxic anti-inflammatory reagent that inhibits p38 and NF-kappaB--on lipopolysaccharide (LPS)-induced muscle wasting in mice. Daily intraperitoneal (i.p.) injection of curcumin (10-60 micro g/kg) for 4 days inhibited, in a dose-dependent manner, the LPS-stimulated (1 mg/kg, i.p.) increase of atrogin-1/MAFbx expression in gastrocnemius and extensor digitorum longus (EDL) muscles, resulting in the attenuation of muscle protein loss. It should also be noted that curcumin administration did not alter the basal expression of atrogin-1/MAFbx, nor did it affect LPS-stimulated MuRF1 and polyubiquitin expression. LPS activated p38 and NF-kappaB, while inhibiting AKT; whereas, curcumin administration inhibited LPS-stimulated p38 activation, without altering the effect of LPS on NF-kappaB and AKT. These results indicate that curcumin is effective in blocking LPS-induced loss of muscle mass through the inhibition of p38-mediated upregulation of atrogin-1/MAFbx.  相似文献   

4.
Molecular mechanisms modulating muscle mass   总被引:8,自引:0,他引:8  
Skeletal muscle atrophy occurs in multiple clinical settings, including cancer, AIDS and sepsis, and is caused in part by an increase in the rate of ATP-dependent ubiquitin-mediated proteolysis. The expression of two recently identified genes encoding ubiquitin-protein ligases, MAFbx/Atrogin-1 and MuRF1, has been shown to increase during muscle atrophy. Mouse knockout studies have demonstrated that MAFbx and MuRF1 are required for muscle atrophy, and thus might be targets for clinical intervention. A second strategy for blocking atrophy involves the stimulation of pathways leading to skeletal muscle hypertrophy. Insulin-like growth factor 1 (IGF-1) is a protein growth factor that can induce skeletal muscle hypertrophy by activating the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. The pathways modulating hypertrophy and atrophy will be further discussed, to highlight potential targets for clinical intervention.  相似文献   

5.
The muscle ubiquitin ligases MAFbx and MuRF1 are upregulated in and promote muscle atrophy. Upregulation of MAFbx and MuRF1 by glucocorticoids has been linked to activation of FOXO1 and FOXO3A resulting from reduced Akt activity. We determined the requirements for the glucocorticoid receptor (GR) in these biological responses in C2C12 cells in which GR expression was knocked down by stable expression of an shRNA. Loss of GR prevented dexamethasone-induced increases in protein catabolism. Loss of GR, or inhibition of ligand binding to GR with RU486, prevented upregulation of MAFbx and MuRF1 by dexamethasone. Loss of GR also prevented dexamethasone-induced decreases in Akt phosphorylation, and increases in the fraction of FOXO1 that was unphosphorylated. The findings establish a requirement for the GR in activating molecular signals that promote muscle protein catabolism.  相似文献   

6.
Signalling pathways that mediate skeletal muscle hypertrophy and atrophy   总被引:1,自引:0,他引:1  
Atrophy of skeletal muscle is a serious consequence of numerous diseases, including cancer and AIDS. Successful treatments for skeletal muscle atrophy could either block protein degradation pathways activated during atrophy or stimulate protein synthesis pathways induced during skeletal muscle hypertrophy. This perspective will focus on the signalling pathways that control skeletal muscle atrophy and hypertrophy, including the recently identified ubiquitin ligases muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), as a basis to develop targets for pharmacologic intervention in muscle disease.  相似文献   

7.
8.
In response to cancer, AIDS, sepsis and other systemic diseases inducing muscle atrophy, the E3 ubiquitin ligase Atrogin1/MAFbx (MAFbx) is dramatically upregulated and this response is necessary for rapid atrophy. However, the precise function of MAFbx in muscle wasting has been questioned. Here, we present evidence that during muscle atrophy MAFbx targets the eukaryotic initiation factor 3 subunit 5 (eIF3-f) for ubiquitination and degradation by the proteasome. Ectopic expression of MAFbx in myotubes induces atrophy and degradation of eIF3-f. Conversely, blockade of MAFbx expression by small hairpin RNA interference prevents eIF3-f degradation in myotubes undergoing atrophy. Furthermore, genetic activation of eIF3-f is sufficient to cause hypertrophy and to block atrophy in myotubes, whereas genetic blockade of eIF3-f expression induces atrophy in myotubes. Finally, eIF3-f induces increasing expression of muscle structural proteins and hypertrophy in both myotubes and mouse skeletal muscle. We conclude that eIF3-f is a key target that accounts for MAFbx function during muscle atrophy and has a major role in skeletal muscle hypertrophy. Thus, eIF3-f seems to be an attractive therapeutic target.  相似文献   

9.
Muscle atrophy is caused by accelerated protein degradation and occurs in many pathological states. Two muscle-specific ubiquitin ligases, MAFbx/atrogin-1 and muscle RING-finger 1 (MuRF1), are prominently induced during muscle atrophy and mediate atrophy-associated protein degradation. Blocking the expression of these two ubiquitin ligases provides protection against muscle atrophy. Here we report that miR-23a suppresses the translation of both MAFbx/atrogin-1 and MuRF1 in a 3'-UTR-dependent manner. Ectopic expression of miR-23a is sufficient to protect muscles from atrophy in vitro and in vivo. Furthermore, miR-23a transgenic mice showed resistance against glucocorticoid-induced skeletal muscle atrophy. These data suggest that suppression of multiple regulators by a single miRNA can have significant consequences in adult tissues.  相似文献   

10.
目的:探讨推拿对失神经骨骼肌萎缩大鼠的治疗作用及其机制。方法:48只雄性SD大鼠随机分为模型组(n=24)和推拿组(n=24),通过切断右侧胫神经制备腓肠肌萎缩大鼠模型。术后第2日开始给推拿组大鼠手术侧腓肠肌给予手法干预,模型组不予干预。两组分别在0 d、7 d、14 d、21 d四个时间点各处死6只大鼠,取大鼠双侧腓肠肌,称重后计算各组大鼠腓肠肌湿重比;HE染色测定肌纤维截面积和直径,实时荧光定量PCR检测腓肠肌中miR-23a、Akt、MuRF1、MAFbx基因相对表达量。结果:与0 d比较,模型组和推拿组大鼠腓肠肌湿重比、肌纤维截面积和直径呈现进行性下降的趋势,其中7 d、14 d、21 d推拿组腓肠肌湿重比、肌纤维截面积和直径均显著高于模型组(P<0.05,P<0.01);与0 d比较,模型组和推拿组MuRF1、MAFbx、Akt mRNA表达均呈现先升后降的趋势,其中7 d、21 d推拿组MuRF1 mRNA表达均显著低于模型组(P<0.05,P<0.01),7 d、14 d、21 d推拿组MAFbx mRNA表达均显著低于模型组(P<0.01,P<0.05,P<0.01),7 d、14 d、21 d推拿组Akt mRNA表达均显著高于模型组(P<0.05,P<0.01);与0 d比较,模型组和推拿组21 d时miR-23a mRNA表达升高,推拿组miR-23a mRNA表达显著高于模型组(P<0.05)。结论:推拿能延缓失神经骨骼肌的萎缩,其机制可能与上调miR-23a、Akt基因的表达,下调 MuRF1、MAFbx基因的表达,使蛋白降解速度受到抑制,从而减轻骨骼肌蛋白的降解程度有关。  相似文献   

11.
While insulin is an anabolic hormone, AMP-activated protein kinase (AMPK) is not only a key energy regulator, but it can also control substrate metabolism directly by inducing skeletal muscle protein degradation. The hypothesis of the present study was that insulin inhibits AMPK and thus down-regulates the expression of the ubiquitin E3 ligases, muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1) in skeletal muscle cells. Differentiated L6 myotubes were treated with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) and/or compound C to stimulate and/or block AMPK respectively. These treatments were also conducted in the presence or absence of insulin and the cells were analysed by western blot and quantitative real-time PCR. In addition, nuleotide levels were determined using HPLC. The activation of AMPK with AICAR enhanced the mRNA levels of MAFbx and MuRF1. Insulin reduced the phosphorylation and activity AMPK, which was accompanied by reduced MAFbx and MuRF1 mRNA levels. Using a protein kinase B (PKB/Akt) inhibitor, we found that insulin regulates AMPK through the activation of Akt. Furthermore, insulin down-regulated AMPK α2 mRNA. We conclude that insulin inhibits AMPK through Akt phosphorylation in L6 myotubes, which may serve as a possible signalling pathway for the down-regulation of protein degradation. In addition, decreased expression of AMPK α2 may partially participate in inhibiting the activity of AMPK.  相似文献   

12.
13.
Skeletal muscle atrophy commonly occurs in acute and chronic disease. The expression of the muscle-specific E3 ligases atrogin-1 (MAFbx) and muscle RING finger 1 (MuRF1) is induced by atrophy stimuli such as glucocorticoids or absence of IGF-I/insulin and subsequent Akt signaling. We investigated whether glycogen synthase kinase-3β (GSK-3β), a downstream molecule in IGF-I/Akt signaling, is required for basal and atrophy stimulus-induced expression of atrogin-1 and MuRF1, and myofibrillar protein loss in C(2)C(12) skeletal myotubes. Abrogation of basal IGF-I signaling, using LY294002, resulted in a prominent induction of atrogin-1 and MuRF1 mRNA and was accompanied by a loss of myosin heavy chain fast (MyHC-f) and myosin light chains 1 (MyLC-1) and -3 (MyLC-3). The synthetic glucocorticoid dexamethasone (Dex) also induced the expression of both atrogenes and likewise resulted in the loss of myosin protein abundance. Genetic ablation of GSK-3β using small interfering RNA resulted in specific sparing of MyHC-f, MyLC-1, and MyLC-3 protein levels after Dex treatment or impaired IGF-I/Akt signaling. Interestingly, loss of endogenous GSK-3β suppressed both basal and atrophy stimulus-induced atrogin-1 and MuRF1 expression, whereas pharmacological GSK-3β inhibition, using CHIR99021 or LiCl, only reduced atrogin-1 mRNA levels in response to LY294002 or Dex. In conclusion, our data reveal that myotube atrophy and myofibrillar protein loss are GSK-3β dependent, and demonstrate for the first time that basal and atrophy stimulus-induced atrogin-1 mRNA expression requires GSK-3β enzymatic activity, whereas MuRF1 expression depends solely on the physical presence of GSK-3β.  相似文献   

14.
Acute Kidney Injury (AKI) is frequently encountered in hospitalized patients where it is associated with increased mortality and morbidity notably affecting muscle wasting. Increased protein degradation has been shown to be the main actor of AKI-induced muscle atrophy, but the proteolytic pathways involved are poorly known. The Ubiquitin Proteasome System (UPS) is almost systematically activated in various catabolic situations, and the E3 ligases MuRF1 and MAFbx are generally up regulated in atrophying muscles. We hypothesized that the UPS may be one of the main actors in catabolic skeletal muscles from AKI animals. We used gentamicin-induced acute kidney disease (G-AKI) in rats fed a high protein diet to promote acidosis. We first addressed the impact of G-AKI in the development of mild catabolic conditions. We found that both muscle atrophy and UPS activation were induced with the development of G-AKI. In addition, the phasic muscles were more sensitive to 7-days G-AKI (−11 to −17%, P < 0.05) than the antigravity soleus muscle (−11%, NS), indicating a differential impact of AKI in the musculature. We observed an increased expression of the muscle-specific E3 ligases MuRF1 and MAFbx in phasic muscles that was highly correlated to the G-AKI severity (R2 = 0.64, P < 0.01 and R2 = 0.71, P < 0.005 respectively). Conversely, we observed no variation in the expression of three other E3 ligases (Nedd4, Trim32 and Fbxo30/MUSA1). Altogether, our data indicate that MuRF1 and MAFbx are sensitive markers and potential targets to prevent muscle atrophy during G-AKI.  相似文献   

15.
MUSCLE ATROPHY IS THE RESULT OF TWO OPPOSING CONDITIONS THAT CAN BE FOUND IN PATHOLOGICAL OR DISEASED MUSCLES: an imbalance in protein synthesis and degradation mechanisms. Thus, we investigated whether exogenous melatonin could regulate muscle components in stroke-induced muscle atrophy in rats. Comparing muscle phenotypes, we found that long-term melatonin administration could influence muscle mass. Muscle atrophy-related genes, including muscle atrophy F-box (MAFbx) and muscle ring finger 1 (MuRF1) were significantly down-regulated in melatonin-administered rats in the gastrocnemius. However, only MAFbx at the mRNA level was attenuated in the soleus of melatonin-administered rats. Insulin-like growth factor-1 receptor (IGF-1R) was significantly over-expressed in melatonin-administered rats in both the gastrocnemius and soleus muscles. Comparing myosin heavy chain (MHC) components, in the gastrocnemius, expression of both slow- and fast-type isoforms were significantly enhanced in melatonin-administered rats. These results suggest that long-term exogenous melatonin-administration may have a prophylactic effect on muscle atrophy through the MuRF1/MAFbx signaling pathway, as well as a potential therapeutic effect on muscle atrophy through the IGF-1-mediated hypertrophic signaling pathway in a stroke animal model.  相似文献   

16.
17.
The control of muscle cell size is a physiological process balanced by a fine tuning between protein synthesis and protein degradation. MAFbx/Atrogin-1 is a muscle specific E3 ubiquitin ligase up regulated during disuse, immobilization, and fasting or systemic diseases such as diabetes, cancer, SIDA and renal failure. This response is necessary to induce a rapid and functional atrophy. To date, the targets of MAFbx/Atrogin-1 in skeletal muscle remain to be identified. We have recently presented evidence that eIF3-f, a regulatory subunit of the eukaryotic translation factor eIF3 is a key target that accounts for MAFbx/Atrogin-1 function in muscle atrophy. More importantly, we showed that eIF3-f act as a “translational enhancer” that increases the efficiency of the structural muscle proteins synthesis leading to both in vitro and in vivo muscle hypertrophy. We propose that eIF3-f subunit, a mTOR/S6K1 scaffolding protein in the IGF-1/Akt/mTOR dependant control of protein translation, is a positive actor essential to the translation of specific mRNAs probably implicated in the muscle hypertrophy. The central role of eIF3-f in both the atrophic and hypertrophic pathways will be discussed in the light of its promising potential in muscle wasting therapy.  相似文献   

18.
Chronic arthritis induces cachexia associated with an inhibition of the growth hormone (GH)-insulin-like growth factor-I (IGF-I) system and an activation of the E3 ubiquitin-ligating enzymes muscle atrophy F-box (MAFbx) and muscle Ring finger 1 (MuRF1) in the skeletal muscle. The aim of this work was to study the role of cyclooxygenase (COX)-2 in chronic arthritis-induced cachexia. Arthritis was induced in rats by Freund's adjuvant injection, and the effects of two COX inhibitors (indomethacin, a nonspecific inhibitor, and meloxicam, a selective COX-2 inhibitor on pituitary GH and on liver and serum IGF-I levels) were tested. Arthritis decreased body weight gain and GH and liver IGF-I gene expression. In the arthritic rats, both inhibitors, indomethacin and meloxicam, prevented the inhibitory effect of arthritis on body weight gain. Indomethacin and meloxicam administration to arthritic rats increased pituitary GH and liver IGF-I mRNA as well as serum levels of IGF-I. These data suggest that induction of COX-2 during chronic inflammation is involved in the inhibition of the GH-IGF-I axis and in the body weight loss. In the gastrocnemius muscle, arthritis increased the gene expression of tumor necrosis factor (TNF)-alpha, the E3 ubiquitin-ligating enzymes MAFbx and MuRF1, as well as of IGF-I and IGF-binding protein-5 (IGFBP-5). Inhibition of COX-2 by meloxicam administration increased gastrocnemius weight and decreased MAFbx, MuRF1, TNF-alpha, and IGFBP-5 gene expression. In summary, our data indicate that chronic arthritis-induced cachexia and muscle wasting are mediated by the COX-2 pathway resulting in a decreased GH-IGF-I secretion and increased expression of MAFbx and MuRF1 mRNA.  相似文献   

19.
Skeletal muscle atrophy occurs in different catabolic conditions and mostly accompanied with upregulation of Muscle ring finger 1 (MuRF1) gene which is one of the master regulatory genes in muscle atrophy. Taurine amino acid is widely distributed in different tissues and has anti-inflammatory and antioxidant effects. This study aimed to investigate the potential influence of taurine on muscle atrophy induced by reduced mechanical loading. Twenty-eight Albino mice were used, and divided equally into four groups: group I (control); group II (immobilization); group III (immobilization?+?taurine); and group IV (taurine). Quadriceps muscle sections were taken for histopathology, immunohistochemical analysis of caspase 3 expression, and qRT-PCR of MuRF1 gene. Our data revealed Zenker necrosis associated with axonal injury of the nerve trunk of the immobilized muscle together with increase of caspase 3 expression and upregulation of MuRF1 gene. While, taurine supplementation alleviated the muscular and neural tissues damage associated with disuse skeletal muscle atrophy through downregulation of MuRF1 gene and decrease of tissue caspase 3 expression. In conclusion, taurine may be helpful to counteract apoptosis and up-regulated MuRF1 gene expression related to muscle atrophy, which might be hopeful for a large number of patients.  相似文献   

20.
Chronic arthritis is a catabolic state associated with an inhibition of the IGF system and a decrease in body weight. Cachexia and muscular wasting is secondary to protein degradation by the ubiquitin-proteasome pathway. The aim of this work was to analyze the effect of adjuvant-induced arthritis on the muscle-specific ubiquitin ligases muscle ring finger 1 (MuRF1) and muscle atrophy F-box (MAFbx) as well as on IGF-I and IGF-binding protein-5 (IGFBP-5) gene expression in the skeletal muscle. We also studied whether the synthetic ghrelin receptor agonist, growth hormone releasing peptide-2 (GHRP-2), was able to prevent arthritis-induced changes in the skeletal muscle. Arthritis induced an increase in MuRF1, MAFbx (P < 0.01), and tumor necrosis factor (TNF)-alpha mRNA (P < 0.05) in the skeletal muscle. Arthritis decreased the serum IGF-I and its gene expression in the liver (P < 0.01), whereas it increased IGF-I and IGFBP-5 gene expression in the skeletal muscle (P < 0.01). Administration of GHRP-2 for 8 days prevented the arthritis-induced increase in muscular MuRF1, MAFbx, and TNF-alpha gene expression. GHRP-2 treatment increased the serum concentrations of IGF-I and the IGF-I mRNA in the liver and in the cardiac muscle and decreased muscular IGFBP-5 mRNA both in control and in arthritic rats (P < 0.05). GHRP-2 treatment increased muscular IGF-I mRNA in control rats (P < 0.01), but it did not modify the muscular IGF-I gene expression in arthritic rats. These data indicate that arthritis induces an increase in the activity of the ubiquitin-proteasome proteolytic pathway that is prevented by GHRP-2 administration. The parallel changes in muscular IGFBP-5 and TNF-alpha gene expression with the ubiquitin ligases suggest that they can participate in skeletal muscle alterations during chronic arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号