首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
多年前,人们已经在利用诸如rDNA细菌或培养的哺乳动物细胞等传统方法生产重组蛋白中遇到了重重困难。生产几千克重组蛋白的生物反应器成本需上亿元,哺乳动物细胞培养极易受真菌污染,且产量极低。因此,许多公司正在探索生产药物蛋白的替代方法,这些方法主要集中在转基因动、植物上。  相似文献   

2.
近年来,用于重组蛋白生产的哺乳动物细胞表达领域涌现出一系列革命性的新技术。优化的工程细胞为表达重组蛋白提供了优良的宿主;基于荧光的筛选方法可以快捷地得到高表达细胞株;高通量的培养工艺能够预测适合外源蛋白表达的细胞培养条件;可抛弃式生物反应器为大规模细胞培养提供了更多的选择;大规模瞬时表达技术节省了重组蛋白的生产时间。这些新技术提高了重组蛋白的研发和生产效率,加快了蛋白药物的工业化进程。  相似文献   

3.
细胞工程     
<正> 已认识到植物细胞组织培养用于特殊化学物质的商业生产的潜力,而且考虑了高产量的生产。讨论了陷井式植物细胞培养的概念及组织培养的商业发展将需要使用高产的变异体问题。评价了连续培养和连续流动的固定化细胞反应器,叙述了从细胞释放产物的问题。  相似文献   

4.
BiotechnologyNEWS 2 0 0 1年 2 1卷 2 8期第 3页报道 :多年前 ,人们已经在利用诸如rDNA细菌或培养的哺乳动物细胞等传统方法生产重组蛋白中遇到了重重困难。生产几千克重组蛋白的生物反应器成本需上亿元 ,哺乳动物细胞培养极易受真菌污染 ,且产量极低。因此 ,许多公司正在探索生产药物蛋白的替代方法 ,这些方法主要集中在转基因动、植物上。2 0世纪 80年代 ,一些公司如Gentyme(Cambridge ,MA)就开始在转基因农畜中开发rDNA蛋白产品。之后 ,通过转基因动植物生产重组蛋白的研究逐渐增多 ,但这方…  相似文献   

5.
植物细胞培养技术诞生于20世纪初,随着研究的不断进步,逐步发展出植物组织培养、植物器官培养、原生质体培养、细胞培养、冠瘿瘤培养以及不定根或毛状根培养等技术.20世纪80年代前后,利用植物细胞培养生产植物次生代谢产物的研究成为热点.比如1977年Noguchi等就利用20吨发酵罐进行了烟草细胞培养生产尼古丁实验.1977年Alfernmann等利用毛地黄培养细胞把甲基洋地黄毒苷转化为甲基地戈辛,证明植物细胞的生物转化能力.1985年日本的三井石油化学公司利用紫草细胞大规模培养生产紫草宁,并且投放市场,首次将植物细胞培养技术实现了产业化.  相似文献   

6.
作为高附加值重组蛋白生产平台,由于在成本和安全性方面的优势,植物已成为继微生物、哺乳动物等表达系统之后,获得广泛认同的极具潜力的蛋白表达系统。植物表达系统主要包括转基因植株,叶绿体转化植物,瞬时表达系统,细胞悬浮培养。综述了这些表达系统生产重组蛋白的产量和质量,尤其是各种表达系统的优缺点。  相似文献   

7.
生物反应器技术应用于植物细胞培养既可以打破环境条件的限制,又有助于生产过程的人为调控,为植物细胞大规模培养或工厂化直接生产植物细胞有用代谢产物创造了条件,是当前植物细胞培养工作的研究热点。在介绍植物细胞培养特点的基础上,对适用于植物细胞培养的各类生物反应器(搅拌式生物反应器、非搅拌式生物反应器、用于植物细胞固定化培养的生物反应器、光生物反应器以及一次性培养生物反应器)的原理、优缺点等进行比较分析,最后提出了植物细胞培养生物反应器研究的发展方向,以期为植物细胞培养生物反应器的选择及改良提供参考。  相似文献   

8.
重组蛋白为疾病治疗提供了新手段,同时创造了可观的经济效益。利用经济作物(主要是烟草)、谷类作物、豆科作物和蔬菜作物生产具有药用价值的重组蛋白是“分子农业”最热门的研究内容。尽管许多重组蛋白已在植物中表达,但只有一小部分已成功投入使用。为了极大地克服限制植物生产重组蛋白发展的问题,研究人员改进表达系统以增加重组蛋白的产量。本文从分析植物产生重组蛋白产量低和/或生物活性低等问题入手,综述了近些年来解决这些问题的优化策略,同时提出了提高植物生产重组蛋白产量的研究方向。  相似文献   

9.
利用植物细胞大规模悬浮培养生产植物有用代谢产物在近些年来取得了很大发展,但植物细胞悬浮培养的工业化应用受到来自生物及工程技术上的限制。本文针对植物细胞培养的基本特点,详细讨论了与大规模生产有关的工程技术方面的问题,如植物细胞聚集、溶氧及气体成分、流体性能、剪切力对植物细胞培养产生的影响。  相似文献   

10.
重组蛋白药物是生物药物中的核心产品,主要是通过基因工程菌来生产功能蛋白或其突变体,用于弥补体内蛋白的缺失,从而对疾病的治疗发挥关键作用。近年来,重组蛋白药物在疾病治疗中发挥作用越来越大,相关技术也发展迅速。通过综述重组蛋白药物的中上游生产流程,并重点分析了重组蛋白药物在表达系统、细胞培养、纯化和质量控制等环节的最新技术进展,展示了重组蛋白药物制备的技术提升水平,以期为国内重组蛋白药物的生产提供一定的参考依据。  相似文献   

11.
The use of plants for production of recombinant proteins is becoming widely accepted. More recently, plant cell cultures have been proposed as valuable systems for producing a wide range of biologically active proteins. Such systems provide certain advantages over whole plants, but yields are still considered a limitation. In this study we established a Medicago truncatula cell suspension line expressing phytase from Aspergillus niger. Phytase is an N-glycosylated enzyme that breaks down indigestible phytate, resulting in an increased availability of phosphorus and other minerals in monogastric animals and reduced levels of phosphorus output in their manure. Various production systems have previously been used to express heterologous phytase, including several plant species. In this work, remarkable amounts of enzymatically active recombinant phytase were produced and secreted into the culture medium. Recombinant phytase accumulated to at least 25 mg/L and remained stable along the growth curve, and an enriched fraction with high enzymatic activity was easily obtained. We therefore propose M. truncatula cell suspension cultures as a potential system for the production of recombinant proteins. Most importantly, we have shown that, contrary to general belief, it is possible to achieve high levels of a functional recombinant protein in plant cell culture systems.  相似文献   

12.
More and more plant cell suspension cultures are regarded as an attractive alternative to mammalian cells as host organism for production of complex recombinant proteins. The most important advantages of the production platform are low costs, easy scalability and enhanced safety by complete lack of animal components in the cultivation media. In order to characterize, understand and control such systems accurately, it is important to determine the cell-specific productivity (Qp) of plant cell-based production platforms. Compared to many microbial and mammalian cells the morphology of plant cells is nonhomogeneous and the cells tend to form aggregates, therefore commercial cell counting systems are too unreliable to determine cell numbers in plant suspension cultures. We addressed this limitation by developing a novel cell counting method based on a combination of cell-staining and automated confocal fluorescence microscopy. This method allowed us, for the first time, to determine the cell-specific productivity of transgenic tobacco (Nicotiana tabacum cv. Bright Yellow-2) cell suspension cultures producing the human antibody M12. In the future this method will be a useful tool in the development of optimized plant cell-based production processes.  相似文献   

13.
The use of whole plants for the synthesis of recombinant proteins has received a great deal of attention recently because of advantages in economy, scalability and safety compared with traditional microbial and mammalian production systems. However, production systems that use whole plants lack several of the intrinsic benefits of cultured cells, including the precise control over growth conditions, batch-to-batch product consistency, a high level of containment and the ability to produce recombinant proteins in compliance with good manufacturing practice. Plant cell cultures combine the merits of whole-plant systems with those of microbial and animal cell cultures, and already have an established track record for the production of valuable therapeutic secondary metabolites. Although no recombinant proteins have yet been produced commercially using plant cell cultures, there have been many proof-of-principle studies and several companies are investigating the commercial feasibility of such production systems.  相似文献   

14.
Plant cells have been demonstrated to be an attractive heterologous expression host (using whole plants and in vitro plant cell cultures) for foreign protein production in the past 20years. In recent years in vitro liquid cultures of plant cells in a fully contained bioreactor have become promising alternatives to traditional microbial fermentation and mammalian cell cultures as a foreign protein expression platform, due to the unique features of plant cells as a production host including product safety, cost-effective biomanufacturing, and the capacity for complex protein post-translational modifications. Heterologous proteins such as therapeutics, antibodies, vaccines and enzymes for pharmaceutical and industrial applications have been successfully expressed in plant cell culture-based bioreactor systems including suspended dedifferentiated plant cells, moss, and hairy roots, etc. In this article, the current status and emerging trends of plant cell culture for in vitro production of foreign proteins will be discussed with emphasis on the technological progress that has been made in plant cell culture bioreactor systems.  相似文献   

15.
Plant cell suspension cultures can be used for the production of recombinant pharmaceutical proteins, but their potential is limited by modest production levels that may be unstable over long culture periods, reflecting initial culture heterogeneity and subsequent genetic and epigenetic changes. We used flow sorting to generate highly productive monoclonal cell lines from a heterogeneous population of tobacco BY‐2 cells expressing the human antibody M12 by selecting the co‐expressed fluorescent marker protein DsRed located on the same T‐DNA. Separation yielded ~35% wells containing single protoplasts and ~15% wells with monoclonal microcolonies that formed within 2 weeks. Thus, enriching the population of fluorescent cells from initially 24% to 90–96% in the six monoclonal lines resulted in an up to 13‐fold increase in M12 production that remained stable for 10–12 months. This is the first straightforward procedure allowing the generation of monoclonal plant cell suspension cultures by flow sorting, greatly increasing the potential of plant cells as an economical platform for the manufacture of recombinant pharmaceutical proteins.  相似文献   

16.
Plants and plant tissue cultures are used as host systems for expression of foreign proteins including antibodies, vaccines and other therapeutic agents. Recombinant or stably transformed plants and plant cell cultures have been applied for foreign protein production for about 20 years. Because the product concentration achieved exerts a major influence on process economics, considerable efforts have been made by commercial and academic research groups to improve foreign protein expression levels. However, post-synthesis product losses due to protease activity within plant tissues and/or extracellular protein adsorption in plant cell cultures can negate the benefits of molecular or genetic enhancement of protein expression. Transient expression of foreign proteins using plant viral vectors is also a practical approach for producing foreign proteins in plants. Adaptation of this technology is required to allow infection and propagation of engineered viruses in plant tissue cultures for transient protein expression in vitro.  相似文献   

17.
Antibody molecular farming in plants and plant cells   总被引:1,自引:0,他引:1  
`Molecular Farming' is a novel approach to the production of pharmaceuticals, where valuable recombinant proteins can be produced in transgenic organisms on an agricultural scale. Plants have been traditionally used as a source of medicines, but the use of transgenic plants in molecular farming represents a novel source of molecular medicines that include plasma proteins, enzymes, growth factors, vaccines and recombinant antibodies. Until recently, the wide use of these molecular medicines was limited because of the difficulty in producing these proteins outside animals or animal cell cultures. The application of molecular biology and plant biotechnology in the 1990s showed that many molecular medicines could be synthesised in plants. The goal of this Molecular Farming technology is to produce pharmaceuticals that are safer, easier to produce and less expensive than those produced in animals or microbial cultures. Here, we examine the production of recombinant antibodies by Molecular Farming.  相似文献   

18.
Hairy root type plant in vitro systems as sources of bioactive substances   总被引:6,自引:0,他引:6  
“Hairy root” systems, obtained by transforming plant tissues with the “natural genetic engineer” Agrobacterium rhizogenes, have been known for more than three decades. To date, hairy root cultures have been obtained from more than 100 plant species, including several endangered medicinal plants, affording opportunities to produce important phytochemicals and proteins in eco-friendly conditions. Diverse strategies can be applied to improve the yields of desired metabolites and to produce recombinant proteins. Furthermore, recent advances in bioreactor design and construction allow hairy root-based technologies to be scaled up while maintaining their biosynthetic potential. This review highlights recent progress in the field and outlines future prospects for exploiting the potential utility of hairy root cultures as “chemical factories” for producing bioactive substances.  相似文献   

19.
Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号