首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The spontaneous and recessive mutation thn in the basidiomycete Schizophyllum commune suppresses the formation of aerial hyphae in the monokaryon and, if present as a double dose, the formation of both aerial hyphae and fruit-bodies in the dikaryon. In the monokaryon, the mutation prevents accumulation of mRNA of the Sc3 gene, and in the dikaryon it also prevents the accumulation of fruiting-specific mRNAs, including mRNAs of the Sc1 and Sc4 genes, which are homologous to the Sc3 gene. These three genes code for hydrophobins, a family of small hydrophobic cysteine-rich proteins. In the thn monokaryon, the only detectable change in synthesized proteins is the disappearance of an abundant protein of apparent Mr = 28 K from the culture medium and from the cell walls. Protein sequencing shows that this is the product of the Sc3 gene. The Sc3 hydrophobin is present in the walls of aerial hyphae as a hot-SDS-insoluble complex. Submerged hyphae excrete large amounts of the hydrophobin into the medium.  相似文献   

2.
Two closely related cysteine-rich hydrophobic proteins, Sc3p and Sc4p, of the basidiomycete Schizophyllum commune are developmentally regulated and associated with the walls of aerial hyphae and fruit-body hyphae. They are present in the walls as hot-SDS-insoluble complexes which can be extracted with formic acid. The hydrophobins can then be dissociated by oxidation with performic acid. However, extraction of the walls with trifluoroacetic acid results in both solubilization and dissociation of the hydrophobin complexes into monomers. This suggests that non-covalent interactions are responsible for formation of these insoluble complexes. Carboxymethylation with iodoacetic acid only occurred after reduction with DTT indicating all cysteines in the monomeric hydrophobins involved in intramolecular disulfide bridges. Abundant proteins with similar properties were found in walls from all other filamentous fungi tested, including the basidiomycetes Pleurotus ostreatus, Coprinus cinereus, Agaricus bisporus, and Phanerochaete chrysosporium, the ascomycetes Aspergillus nidulans, Neurospora crassa, and Penicillium chrysogenum, and the zygomycete Mucor mucedo.  相似文献   

3.
Fungi are well known to the casual observer for producing water-repelling aerial moulds and elaborate fruiting bodies such as mushrooms and polypores. Filamentous fungi colonize moist substrates (such as wood) and have to breach the water-air interface to grow into the air. Animals and plants breach this interface by mechanical force. Here, we show that a filamentous fungus such as Schizophyllum commune first has to reduce the water surface tension before its hyphae can escape the aqueous phase to form aerial structures such as aerial hyphae or fruiting bodies. The large drop in surface tension (from 72 to 24 mJ m-2) results from self-assembly of a secreted hydrophobin (SC3) into a stable amphipathic protein film at the water-air interface. Other, but not all, surface-active molecules (that is, other class I hydrophobins and streptofactin from Streptomyces tendae) can substitute for SC3 in the medium. This demonstrates that hydrophobins not only have a function at the hyphal surface but also at the medium-air interface, which explains why fungi secrete large amounts of hydrophobin into their aqueous surroundings.  相似文献   

4.
Filamentous fungi and filamentous bacteria (i.e., the streptomycetes) belong to different kingdoms that diverged early in evolution. Yet, they adopted similar lifestyles. After a submerged feeding mycelium has been established, hyphae grow into the air and form aerial structures from which (a)sexual spores can develop. These spores are dispersed and can give rise to a new mycelium. Some of the key processes involved in the formation of aerial hyphae by these microbes appear to be very similar. In both cases molecules that lower the surface tension are secreted into the aqueous environment, thereby enabling hyphae to grow into the air. Aerial hyphae are then covered with a hydrophobic film. In fungi, this film is characterized by a mosaic of parallel rodlets, while similar rodlets have also been observed on aerial structures of filamentous bacteria. Although the erection of aerial hyphae in both filamentous fungi and filamentous bacteria is dependent upon (poly)peptides that are structurally unrelated, they can, at least partially, functionally substitute for each other.  相似文献   

5.
The Sc3p hydrophobin of the basidiomycete Schizophyllum commune is a small hydrophobic protein (100 to 101 amino acids) containing eight cysteine residues. Large amounts of the protein are excreted into the culture medium as monomers, but in the walls of aerial hyphae, the protein is present as an SDS-insoluble complex. In this study, we show that the Sc3p hydrophobin spontaneously assembles into an SDS-insoluble protein membrane on the surface of gas bubbles or when dried down on a hydrophilic surface. Electron microscopy of the assembled hydrophobin shows a surface consisting of rodlets spaced 10 nm apart, which is similar to those rodlets seen on the surface of aerial hyphae. When the purified Sc3p hydrophobin assembles on a hydrophilic surface, a surface is exposed with high hydrophobicity, similar to that of aerial hyphae. The rodlet layer, assembled in vivo and in vitro, can be disassembled by dissolution in trifluoroacetic acid and, after removal of the acid, reassembled into a rodlet layer. We propose, therefore, that the hydrophobic rodlet layer on aerial hyphae arises by interfacial self-assembly of Sc3p hydrophobin monomers, involving noncovalent interactions only. Submerged hyphae merely excrete monomers because these hyphae are not exposed to a water-air interface. The generally observed rodlet layers on fungal spores may arise in a similar way.  相似文献   

6.
Streptomyces coelicolor is characterized by a complex life cycle and serves as a model system for bacterial development. After a feeding substrate mycelium has been formed, this filamentous bacterium differentiates by forming aerial hyphae that septate into spores. The bld cascade regulates initiation of aerial growth, whereas the whi genes control spore formation. Recent findings indicate the existence of another regulatory pathway that operates after aerial hyphae have started to grow into the air, which we call the sky pathway. This pathway controls the expression of the chaplin and rodlin genes. These genes encode proteins that assemble into a rodlet layer that provides surface hydrophobicity to aerial hyphae and spores.  相似文献   

7.

Background  

Hydrophobins are small, cysteine rich, surface active proteins secreted by filamentous fungi, forming hydrophobic layers on the walls of aerial mycelia and spores. Hydrophobin mutants in a variety of fungi have been described to show 'easily wettable' phenotypes, indicating that hydrophobins play a general role in conferring surface hydrophobicity to aerial hyphae and spores.  相似文献   

8.
The filamentous bacteria Streptomyces coelicolor and Streptomyces lividans exhibit a complex life cycle. After a branched submerged mycelium has been established, aerial hyphae are formed that may septate to form chains of spores. The aerial structures possess several surface layers of unknown nature that make them hydrophobic, one of which is the rodlet layer. We have identified two homologous proteins, RdlA and RdlB, that are involved in the formation of the rodlet layer in both streptomycetes. The rdl genes are expressed in growing aerial hyphae but not in spores. Immunolocalization showed that RdlA and RdlB are present at surfaces of aerial structures, where they form a highly insoluble layer. Disruption of both rdlA and rdlB in S. coelicolor and S. lividans (DeltardlAB strains) did not affect the formation and differentiation of aerial hyphae. However, the characteristic rodlet layer was absent. Genes rdlA and rdlB were also expressed in submerged hyphae that were in contact with a hydrophobic solid. Attachment to this substratum was greatly reduced in the DeltardlAB strains. Sequences homologous to rdlA and rdlB occur in a number of streptomycetes representing the phylogenetic diversity of this group of bacteria, indicating a general role for these proteins in rodlet formation and attachment.  相似文献   

9.
Mycelial fungi secrete small, cysteine-rich, proteins, called hydrophobins, that self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes, highly insoluble in case of Class I hydrophobins. By self-assembly at the culture medium-air interface they greatly lower the surface tension enabling emergent structures to grow into the air. By self-assembly at the interface between the hydrophilic cell wall and the air or any other hydrophobic environment, these emergent structures are coated with a hydrophobin membrane. These properties allow hydrophobins to fulfil a broad spectrum of functions in fungal development. They are involved in formation of aerial (reproductive) structures, in aerial dispersion of spores, and they line air channels within fruiting bodies with a hydrophobic coating, probably serving gas exchange. Hydrophobins also mediate hyphal attachment to hydrophobic surfaces such as those of plants. Moreover, they appear involved in complex interhyphal interactions, and in interactions with algae in lichens. Their resistance towards chemical and enzymatic treatments suggests that assembled hydrophobins also protect fungal emergent structures against adverse environmental conditions.  相似文献   

10.
Hydrophobins are morphogenetic proteins produced by fungi during assembly of aerial hyphae, sporulation, mushroom development and pathogenesis. Eight cysteine residues are present in hydrophobins and form intramolecular disulphide bonds. Here, we show that expressing eight cysteine-alanine substitution alleles of the MPG1 hydrophobin gene from Magnaporthe grisea causes severe defects in development of aerial hyphae and spores. Immunolocalization revealed that Mpg1 hydrophobin variants, lacking intact disulphide bonds, retain the capacity to self-assemble, but are not secreted to the cell surface. This provides the first genetic evidence that disulphide bridges in a hydrophobin are dispensable for aggregation, but essential for secretion.  相似文献   

11.
Hydrophobins are small proteins, characterised by the presence of eight positionally conserved cysteine residues, and are present in all filamentous asco- and basidiomycetes. They are found on the outer surfaces of cell walls of hyphae and conidia, where they mediate interactions between the fungus and the environment. Hydrophobins are conventionally grouped into two classes (class I and II) according to their solubility in solvents, hydropathy profiles and spacing between the conserved cysteines. Here we describe a novel set of hydrophobins from Trichoderma spp. that deviate from this classification in their hydropathy, cysteine spacing and protein surface pattern. Phylogenetic analysis shows that they form separate clades within ascomycete class I hydrophobins. Using T. atroviride as a model, the novel hydrophobins were found to be expressed under conditions of glucose limitation and to be regulated by differential splicing.  相似文献   

12.
Two monokaryons of Schizophyllum commune can form a fertile dikaryon when the mating-type genes differ. Monokaryons form sterile aerial hyphae, while dikaryons also form fruiting bodies that function in sexual reproduction. The SC3 hydrophobin gene is expressed both in monokaryons and in dikaryons. The SC4 hydrophobin is dikaryon specific. In the monokaryon, SC3 lowers the water surface tension, coats aerial hyphae with a hydrophobic layer and mediates attachment of hyphae to hydrophobic surfaces. The SC4 protein lines gas channels within fruiting bodies with a hydrophobic membrane. Using gene disruptions, in this study, we show that in dikaryons SC3 fulfils the same roles as in monokaryons. SC4, on the other hand, has a role within fruiting bodies. In contrast to gas channels in fruiting bodies of the wild type, those of a DeltaSC4 strain easily filled with water. Thus, SC4 prevents gas channels filling with water under wet conditions, probably serving uninterrupted gas exchange. Other dikaryon-specific hydrophobin genes, SC1 and SC6, apparently do not substitute for the SC4 gene. In addition, by expressing the SC4 gene behind the SC3 promoter in a DeltaSC3 monokaryon, it was shown that SC4 cannot fully substitute for SC3, indicating that both hydrophobins evolved to fulfil specific functions.  相似文献   

13.
Hydrophobins are central to developmental processes of filamentous fungi. HCf-1 and HCf-6 are two of the six hydrophobins identified in the plant pathogenic fungus Cladosporium fulvum. We have fused the viral epitope V5 to HCf-1 and HCf-6, introduced the recombinant genes into C. fulvum strains that lack the two genes, and localised the tagged proteins by immunofluorescence microscopy. HCf-1(V5) is abundant on conidia and aerial structures formed in vitro and emerging from disease lesions on infected tomato plants. This is consistent with the proposed function of HCf-1 in aerial development and dissemination of conidia. HCf-6(V5) is secreted onto the growth substrate by the hyphae and during invasion of plant tissues, which suggests a function in adhesion and infection. This was not supported by the phenotypic analysis of DeltaHCf-6 strains. Hydrophobins may play distinct roles due to precisely regulated spatial localisation during infection-related development of C. fulvum.  相似文献   

14.
Streptomycetes form hydrophobic aerial hyphae that eventually septate into hydrophobic spores. Both aerial hyphae and spores possess a typical surface layer called the rodlet layer. We present here evidence that rodlet formation is conserved in the streptomycetes. The formation of the rodlet layer is the result of the interplay between rodlins and chaplins. A strain of Streptomyces coelicolor in which the rodlin genes rdlA and/or rdlB were deleted no longer formed the rodlet layer. Instead, these surfaces were decorated with fine fibrils. Deletion of all eight chaplin genes (strain DeltachpABCDEFGH) resulted in the absence of the rodlet layer as well as the fibrils at surfaces of aerial hyphae and spores. Apart from coating these surfaces, chaplins are involved in the escape of hyphae into the air, as was shown by the strong reduction in the number of aerial hyphae in the DeltachpABCDEFGH strain. The decrease in the number of aerial hyphae correlated with a lower expression of the rdl genes in the colony. Yet, expression per aerial hypha was similar to that in the wild-type strain, indicating that expression of the rdl genes is initiated after the hypha has sensed that it has grown into the air.  相似文献   

15.
Hydrophobins are highly surface-active proteins that are specific to filamentous fungi. They function as coatings on various fungal structures, enable aerial growth of hyphae, and facilitate attachment to surfaces. Little is known about their structures and structure-function relationships. In this work we show highly organized surface layers of hydrophobins, representing the most detailed structural study of hydrophobin films so far. Langmuir-Blodgett films of class II hydrophobins HFBI and HFBII from Trichoderma reesei were prepared and analyzed by atomic force microscopy. The films showed highly ordered two-dimensional crystalline structures. By combining our recent results on small-angle X-ray scattering of hydrophobin solutions, we found that the unit cells in the films have dimensions similar to those of tetrameric aggregates found in solutions. Further analysis leads to a model in which the building blocks of the two-dimensional crystals are shape-persistent supramolecules consisting of four hydrophobin molecules. The results also indicate functional and structural differences between HFBI and HFBII that help to explain differences in their properties. The possibility that the highly organized surface assemblies of hydrophobins could allow a route for manufacturing functional surfaces is suggested.  相似文献   

16.
The filamentous bacterium S. coelicolor differentiates by forming aerial hyphae, which protrude into the air and metamorphose into chains of spores. Aerial hyphae formation is associated with the production of a small, abundant protein, SapB, which is present in a zone around colonies of differentiating bacteria. Production of SapB is impaired in bld mutants, which are blocked in aerial hyphae formation, but not in whi mutants in which spore formation is prevented. We report that aerial hyphae formation by a newly identified bld mutant is restored by juxtaposition of the mutant near colonies of SapB-producing bacteria or by the application of the purified protein near mutant colonies. These observations implicate SapB in aerial mycelium formation and suggest that SapB is a morphogenetic protein that enables hyphae on the surface of colonies to grow into the air.  相似文献   

17.
The filamentous bacterium Streptomyces coelicolor undergoes a complex process of morphological differentiation involving the formation of a dense lawn of aerial hyphae that grow away from the colony surface into the air to form an aerial mycelium. Bald mutants of S. coelicolor, which are blocked in aerial mycelium formation, regain the capacity to erect aerial structures when exposed to a small hydrophobic protein called SapB, whose synthesis is temporally and spatially correlated with morphological differentiation. We now report that SapB is a surfactant that is capable of reducing the surface tension of water from 72 mJ m?2 to 30 mJ m?2 at a concentration of 50 μg ml?1. We also report that SapB, like the surface-active peptide streptofactin produced by the species S. tendae, was capable of restoring the capacity of bald mutants of S. tendae to erect aerial structures. Strikingly, a member (SC3) of the hydrophobin family of fungal proteins involved in the erection of aerial hyphae in the filamentous fungus Schizophyllum commune was also capable of restoring the capacity of S. coelicolor and S. tendae bald mutants to erect aerial structures. SC3 is unrelated in structure to SapB and streptofactin but, like the streptomycetes proteins, the fungal protein is a surface active agent. Scanning electron microscopy revealed that aerial structures produced in response to both the bacterial or the fungal proteins were undifferentiated vegetative hyphae that had grown away from the colony surface but had not commenced the process of spore formation. We conclude that the production of SapB and streptofactin at the start of morphological differentiation contributes to the erection of aerial hyphae by decreasing the surface tension at the colony surface but that subsequent morphogenesis requires additional developmentally regulated events under the control of bald genes.  相似文献   

18.
Hydrophobins are small (length, about 100 ± 25 amino acids), cysteine-rich, hydrophobic proteins that are present in large amounts in fungal cell walls, where they form part of the outermost layer (rodlet layer); sometimes, they can also be secreted into the medium. Different hydrophobins are associated with different developmental stages of a fungus, and their biological functions include protection of the hyphae against desiccation and attack by either bacterial or fungal parasites, hyphal adherence, and the lowering of surface tension of the culture medium to permit aerial growth of the hyphae. We identified and isolated a hydrophobin (fruit body hydrophobin 1 [Fbh1]) present in fruit bodies but absent in both monokaryotic and dikaryotic mycelia of the edible mushroom Pleurotus ostreatus. In order to study the temporal and spatial expression of the fbh1 gene, we determined the N-terminal amino acid sequence of Fbh1. We also synthesized and cloned the double-stranded cDNA corresponding to the full-length mRNA of Fbh1 to use it as a probe in both Northern blot and in situ hybridization experiments. Fbh1 mRNA is detectable in specific parts of the fruit body, and it is absent in other developmental stages.  相似文献   

19.
M J Kershaw  G Wakley    N J Talbot 《The EMBO journal》1998,17(14):3838-3849
The functional relationship between fungal hydrophobins was studied by complementation analysis of an mpg1(-) gene disruption mutant in Magnaporthe grisea. MPG1 encodes a hydrophobin required for full pathogenicity of the fungus, efficient elaboration of its infection structures and conidial rodlet protein production. Seven heterologous hydrophobin genes were selected which play distinct roles in conidiogenesis, fruit body development, aerial hyphae formation and infection structure elaboration in diverse fungal species. Each hydrophobin was introduced into an mpg1(-) mutant by transformation. Only one hydrophobin gene, SC1 from Schizophyllum commune, was able partially to complement mpg1(-) mutant phenotypes when regulated by its own promoter. In contrast, six of the transformants expressing hydrophobin genes controlled by the MPG1 promoter (SC1 and SC4 from S.commune, rodA and dewA from Aspergillus nidulans, EAS from Neurospora crassa and ssgA from Metarhizium anisopliae) could partially complement each of the diverse functions of MPG1. Complementation was always associated with partial restoration of a rodlet protein layer, characteristic of the particular hydrophobin being expressed, and with hydrophobin surface assembly during infection structure formation. This provides the first genetic evidence that diverse hydrophobin-encoding genes encode functionally related proteins and suggests that, although very diverse in amino acid sequence, the hydrophobins constitute a closely related group of morphogenetic proteins.  相似文献   

20.
Karlsson M  Stenlid J  Olson A 《Mycologia》2007,99(2):227-231
Two hydrophobin genes (HAH1 and HAH2) have been identified in a Heterobasidion annosum infection-stage cDNA-library. Comparisons of their nucleotide and amino acid sequences show similarity to the coh1 hydrophobin from Coprinopsis cinerea and the sc3 hydrophobin from Schizophyllum commune. Both HAH1 and HAH2 display the amino acid consensus pattern of class I hydrophobins, including the spacing of eight conserved cysteine residues. Real-time quantitative RT-PCR showed high expression of both genes in aerial hyphae but low expression in submerged hyphae and during in vitro infection of pine seedlings. Segregation analysis of HAH1 and HAH2 in a defined cross of Heterobasidion annosum localised HAH1 to linkage group 3 but did not positioned HAH2 in the genetic linkage map. Sequence characteristics and expression patterns of HAH1 and HAH2 suggest a role in aerial growth of mycelia, but not during pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号