首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The organogenesis of murine striated muscle: a cytoarchitectural study   总被引:11,自引:0,他引:11  
The ultrastructure and the three-dimensional cytoarchitecture of the developing murine extensor digitorum longus muscle has been studied in spaced, serial, transverse and longitudinal ultrathin sections of the muscles of 12-, 14-, 16-, and 18-day in utero, newborn, and 5-day-old 129 ReJ mice. Despite the fact that in vivo myogenesis is asynchronous (i.e., during most of the fetal period, multiple stages of myogenesis can be seen in a single developing muscle mass), a distinct temporal pattern of development can be seen across the entire width and length of the developing muscle. At 12 days in utero, the developing extensor digitorum longus muscle consists of primary myotubes surrounded by a pleomorphic population of mononucleated cells devoid of myofilaments. At this stage, blood vessels and nerves are found peripheral to but not within the developing muscle mass. A delay of 2 days occurs between the time of formation of the primary and secondary myotubes. Clusters (consisting of one primary myotube and secondary myotubes), axon bundles, capillaries, and primitive motor endplates are found in the muscle by 16 days in utero. Evidence is presented consistent with the hypothesis that cluster formation and cluster dispersal occur simultaneously in the developing muscle, beginning as early as 16-days in utero. By 18 days in utero, many of the primary myotubes of the cluster and the independent myotubes (i.e., single myotubes enclosed in their own basal lamina) have begun to acquire the polygonal shape, fascicular arrangement, and ultrastructure characteristic of more mature myofibers. At birth, clusters are infrequently encountered, and intramuscular axons have begun to undergo myelination. At this time, the only undifferentiated, mononucleated cells present in the muscle are myosatellite cells. The first week postnatal was characterized by further maturation of the myofibers.  相似文献   

2.
THE FINE STRUCTURE OF MOTOR ENDPLATE MORPHOGENESIS   总被引:21,自引:13,他引:8       下载免费PDF全文
The fine structure of the developing neuromuscular junction of rat intercostal muscle has been studied from 16 days in utero to 10 days postpartum. At 16 days, neuromuscular relations consist of close membrane apposition between clusters of axons and groups of myotubes. Focal electron-opaque membrane specializations more intimately connect axon and myotube membranes to each other. What relation these focal contacts bear to future motor endplates is undetermined. The presence of a group of axons lying within a depression in a myotube wall and local thickening of myotube membranes with some overlying basal lamina indicates primitive motor endplate differentiation. At 18 days, large myotubes surrounded by new generations of small muscle cells occur in groups. Clusters of terminal axon sprouts mutually innervate large myotubes and adjacent small muscle cells within the groups. Nerve is separated from muscle plasma membranes by synaptic gaps partially filled by basal lamina. The plasma membranes of large myotubes, where innervated, simulate postsynaptic membranes. At birth, intercostal muscle is composed of separate myofibers. Soleplate nuclei arise coincident with the peripheral migration of myofiber nuclei. A possible source of soleplate nuclei from lateral fusion of small cells' neighboring areas of innervation is suspected but not proven. Adjacent large and small myofibers are mutually innervated by terminal axon networks contained within single Schwann cells. Primary and secondary synaptic clefts are rudimentary. By 10 days, some differentiating motor endplates simulate endplates of mature muscle. Processes of Schwann cells cover primary synaptic clefts. Axon sprouts lie within the primary clefts and are separated from each other. Specific neural control over individual myofibers may occur after neural processes are segregated in this manner.  相似文献   

3.
Morphometric analysis of the developing mouse soleus muscle   总被引:4,自引:0,他引:4  
The pattern of organogenesis of the soleus muscle of the 129 ReJ mouse was evaluated quantitatively using spaced, serial, ultrathin sections and computer-assisted morphometric analysis. Muscles from 14-, 16-, and 18-day in utero mice and muscles of 1- and 5-day-old mice were analyzed to determine age-related alterations in the maximal girth and length of the muscle, number of myotubes, cluster frequency, and the lengths and diameters of myotubes. Primary myotubes are found in the muscle at 14 days in utero. There is little de novo myotube formation between 14 and 16 days in utero, this interval being principally one of primary myotube growth and maturation. The interval between 16 and 18 days in utero is marked by extensive secondary myotube formation, with more myotubes being formed during this period than in any period studied. Morphometric data support the hypothesis that secondary generation myotubes use primary myotubes as a scaffold on which they are formed. Morphometric data also confirm the hypothesis that cluster formation and cluster dispersal occur concurrently during the prenatal period. Secondary myotubes continue to form until birth. At birth, the soleus muscle contains the adult number of myofibers. The first 5 days postnatally are marked by myofiber growth and maturation.  相似文献   

4.
A quantitative analysis of the pattern of development and growth of the fetal extensor digitorum longus muscle of the 129 ReJ mouse was carried out in spaced, serial ultrathin sections with computer-assisted morphometry. Muscle from 12-, 14-, 16-, and 18-day in utero mice and from newborn and 5-day postnatal mice was analyzed to determine age-related changes in such factors as the maximal girth and length of the muscle, the number of myotubes, the "cluster" frequency, and the diameters and lengths of the myotubes and muscle units. A distinct temporal pattern of development was established. It was quantitatively determined that a delay less than or equal to 2 days occurs between the formation of primary myotubes (present at 12 days in utero) and secondary myotubes (present at 16 days in utero). By 16 days in utero, groups of myotubes, consisting of one primary myotube and a variable number of secondary myotubes, form "clusters" surrounded by a common basal lamina. Morphometric analyses of diameter distributions establish that most, if not all, secondary-generation myotubes are formed in association with larger, more mature myotubes. Quantitative data support the hypothesis (Ontell and Kozeka, 1984) that cluster formation and cluster dispersion occur simultaneously, beginning sometime between 16 and 18 days in utero. By 18 days in utero, the adult number of myofibers is present in the developing muscle mass. Analyses of lengths and diameters of the same fibers establish that the pattern of growth of the last-formed myotubes of the developing muscle mass is different from that of myotubes formed earlier in development.  相似文献   

5.
The histogenesis of rat intercostal muscle   总被引:2,自引:17,他引:2       下载免费PDF全文
Intercostal muscle from fetal and newborn rats was examined with the electron microscope. At 16 days' gestation, the developing muscle was composed of primary generations of myotubes, many of which were clustered together in groups. Within these groups, the membranes of neighboring myotubes were interconnected by specialized junctions, including tight junctions. Morphologically undifferentiated cells surrounded the muscle groups, frequently extended pseudopodia along the interspace between adjacent myotubes, and appeared to separate neighboring myotubes from one another. At 18 and 20 days' gestation, the muscle was also composed of groups of cells but the structure of the groups differed from that of the groups observed at 16 days. Single, well differentiated myotubes containing much central glycogen and peripheral myofibrils dominated each group. These large cells were interpreted as primary myotubes. Small, less differentiated muscle cells and undifferentiated cells clustered around their walls. Each cluster was ensheated by a basal lamina. The small cells were interpreted as primordia of new generations of muscle cells which differentiated by appositional growth along the walls of the large primary myotubes. All generations of rat intercostal muscle cells matured to myofibers between 20 days' gestation and birth. Coincidentally, large and small myofibers diverged from each other, leading to disintegration of the groups of muscle cells. Undifferentiated cells frequently occurred in the interspaces between neighboring muscle cells at the time of separation. Myofibers arising at different stages of muscle histogenesis intermingled in a checkerboard fashion as a result of this asynchronous mode of development. The possibility of fusion between neighboring muscle cells in this developing system is discussed.  相似文献   

6.
The present investigation was undertaken to study the relationship between acetylcholine receptor (AchR) clustering and endplate formation within regenerating skeletal muscle grafts. Silver staining of nerves was combined with rhodamine-alpha-bungarotoxin labeling of AchR clusters in heterotopic grafts of the rat soleus muscle. Two major graft procedures were used: whole muscle grafts and grafts which lacked the zone of original motor endplates (MEP-less grafts). These categories were subdivided into standard grafts, where subsequent innervation was allowed, and noninnervated grafts, which were experimentally deprived of innervation. Grafting brought about the death and removal of muscle fibers, followed by regeneration of myotubes within surviving basal lamina sheaths. A transient population of small extra-junctional AchR clusters spontaneously appears shortly after myotube formation in all four muscle graft types. Early myotubes of whole muscle grafts (both innervated and standard grafts, prior to the time of innervation) also develop presumptive secondary synaptic clefts and large, organized aggregations of AchRs at original synaptic sites. At later times, nerves regenerating into standard whole muscle and MEP-less grafts lead to the formation of numerous ectopic endplates. In whole muscle grafts, endplates may also form at original synaptic sites. Functional graft innervation is achieved in whole muscle and MEP-less grafts as early as 20 days postgrafting. The results of this study support the existence of still-unknown factors associated with the original synaptic site which can direct postsynaptic differentiation independent of innervation. They also demonstrate that functional endplates may form in mammalian muscle grafts at both original synaptic sites and ectopic locations, thus indicating that the zone of original synaptic sites is not necessary for the establishment of numerous functional and morphologically well-differentiated endplates.  相似文献   

7.
Molecular forms and histochemical localization of acetylcholinesterase and nonspecific cholinesterase were analysed in muscle regenerates obtained from rat EDL and soleus muscles after ischaemic-toxic degeneration and irreversible inhibition of preexistent enzymes. Regenerating myotubes and myofibres produce the 16S AChE form in the absence of innervation. The 10S AChE form prevails over 4S form with maturation into striated fibres. Although the patterns of AChE molecular forms in normal EDL and soleus muscles differ significantly no such differences were observed in noninnervated regenerates from both muscles. Two types of focal accumulation of AChE appear on the sarcolemma of regenerating muscles: first, in places of former motor endplates and, second, in extrajunctional regions. The 4S form of nonspecific cholinesterase is prevailing in regenerating myotubes whereas its asymmetric forms or focal accumulations could not be identified reliably. The satellite cells which survive after muscle degeneration probably originate from some type of late myoblasts and transmit the information concerning the ability to synthesize the asymmetric AChE forms and to focally accumulate AChE to regenerating muscle cells. Synaptic basal lamina from former motor endplates may locally induce AChE accumulations in regenerating muscles.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

8.
J Kucera  J M Walro 《Histochemistry》1990,93(6):567-580
The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

9.
Summary The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

10.
Analyses were made of the requirements for the formation of a continuous basal lamina during myogenesis of quail muscle in vitro. A culture system was developed in which mass cultures of differentiating muscle cells were embedded in a native gel of rat tail collagen. Fibroblastic cells, which were also present in the cultures, migrated into the gel and within a few days surrounded the newly formed myotubes. In this environment, a continuous basal lamina was formed at the surface of the myotubes as demonstrated by immunofluorescent staining with monoclonal antibodies against type IV collagen, laminin, and heparan sulfate, as well as by electron microscopic immunolocalization. To distinguish between the role of the fibroblasts and the collagen gel in promoting basal lamina formation, clones of quail muscle cells lacking fibroblasts were subsequently embedded in a native rat tail collagen gel. Under these conditions, only very limited fluorescent staining for basement membrane components was observed associated with the myotubes. However, the introduction of chick muscle or skin fibroblasts into the clonal cultures just before gel formation resulted in the formation of an extensive basal lamina on the surface of the myotubes. Conditioned medium from fibroblast cultures by itself was not effective in promoting basal lamina formation. These results clearly show that during myogenesis in vitro fibroblasts must be in close proximity to the myotubes for a continuous basal lamina to form. These results probably relate closely to the interactions that must occur during myogenesis in vivo between the muscle cells and the surrounding connective tissue including the developing tendons.  相似文献   

11.
The chronology of development of spindle neural elements was examined by electron microscopy in fetal and neonatal rats. The three types of intrafusal muscle fiber of spindles from the soleus muscle acquired sensory and motor innervation in the same sequence as they formed--bag2, bag1, and chain. Both the primary and secondary afferents contacted developing spindles before day 20 of gestation. Sensory endings were present on myoblasts, myotubes, and myofibers in all intrafusal bundles regardless of age. The basic features of the sensory innervation--first-order branching of the parent axon, separation of the primary and secondary sensory regions, and location of both primary and secondary endings beneath the basal lamina of the intrafusal fibers--were all established by the fourth postnatal day. Cross-terminals, sensory terminals shared by more than one intrafusal fiber, were more numerous at all developmental stages than in mature spindles. No afferents to immature spindles were supernumerary, and no sensory axons appeared to retract from terminations on intrafusal fibers. The earliest motor axons contacted spindles on the 20th day of gestation or shortly afterward. More motor axons supplied the immature spindles, and a greater number of axon terminals were visible at immature intrafusal motor endings than in adult spindles; hence, retraction of supernumerary motor axons accompanies maturation of the fusimotor system analogous to that observed during the maturation of the skeletomotor system. Motor endings were observed only on the relatively mature myofibers; intrafusal myoblasts and myotubes lacked motor innervation in all age groups. This independence of the early stages of intrafusal fiber assembly from motor innervation may reflect a special inherent myogenic potential of intrafusal myotubes or may stem from the innervation of spindles by sensory axons.  相似文献   

12.
Fusion of myogenic cells in adult murine skeletal muscle regenerating in vivo was examined at the ultrastructural level. Fusion of myoblast to myoblast, myoblast to myotube, and myotube to myotube was observed by 4 to 5 days after injury. Fusion between myogenic cells (myoblasts or myotubes) lacking a definitive glycocalyx or external lamina (basal lamina) occurred at multiple sites. It was defined by zones of cytoplasmic confluence between apposed cells at sites where contiguous segments of the cell membranes were interrupted while their edges had united resulting in linear continuity; vesicles of varying dimensions were frequent in these areas of fusion. Myoblasts were seen invaginating the surface of myofibres and again vesicles were seen in abundance in such regions. Cilia were often observed at this junctional zone suggesting that they might play a role in fusion. In the one example of probable fusion between a myotube and a myofibre, only a single area of cytoplasmic continuity was apparent.  相似文献   

13.
The expression of myosin isoforms was studied during development of calf muscles in foetal and neonatal rats, using monoclonal antibodies against slow, embryonic and neonatal isoforms of myosin heavy chain (MHC). Primary myotubes had appeared in all prospective rat calf muscles by embryonic day 16 (E16). On both E16 and E17, primary myotubes in all muscles with the exception of soleus stained for slow, embryonic and neonatal MHC isoforms; soleus did not express neonatal MHC. In earlier stages of muscle formation staining for the neonatal isoform was absent or faint. Secondary myotubes were present in all muscles by E18, and these stained for both embryonic and neonatal MHCs, but not slow. In mixed muscles, primary myotubes destined to differentiate into fast muscle fibres began to lose expression of slow MHC, and primary myotubes destined to become slow muscle fibres began to lose expression of neonatal MHC. This pattern was further accentuated by E19, when many primary myotubes stained for only one of these two isoforms. Chronic paralysis or denervation from E15 or earlier did not disrupt the normal sequence of maturation of primary myotubes up until E18, but secondary myotubes did not form. By E19, however, most primary myotubes in aneural or paralyzed tibialis anterior muscles had lost expression of slow MHC and expressed only embryonic and neonatal MHCs. Similar changes occurred in other muscles, except for soleus which never expressed neonatal MHC, as in controls. Paralysis or denervation commencing later than E15 did not have these effects, even though it was initiated well before the period of change in expression of MHC isoforms. In this case, some secondary myotubes appeared in treated muscles. Paralysis initiated on E15, followed by recovery 2 days later so that animals were motile during the period of change in expression of MHC isoforms, was as effective as full paralysis. These experiments define a critical period (E15-17) during which foetuses must be active if slow muscle fibres are to differentiate during E19-20. We suggest that changes in expression of MHC isoforms in primary myotubes depend on different populations of myoblasts fusing with the myotubes, and that the normal sequence of appearance of these myoblasts has a stage-dependent reliance on active innervation of foetal muscles. A critical period of nerve-dependence for these myoblasts occurs several days before their action can be noted.  相似文献   

14.
Summary The development of muscle spindles, with respect to the expression of myosin heavy chain isoforms was studied in rat hind limbs from 17 days of gestation up to seven days after birth. Serial cross-sections were labelled with antibodies against slow tonic, slow twitch and neonatal isomyosins, myomesin, laminin and neurofilament protein.At 17–18 days of gestation, a small population of primary myotubes expressing slow tonic myosin were identified as the earliest spindle primordia. These myotubes also expressed slow twitch and, to a lesser extent, neonatal myosin. At 19–20 days of gestation a second myotube became apparent; this staining strongly with anti-neonatal myosin. A day later this secondary myotube acquired reactivity to anti-slow tonic and anti-slow twitch myosins. By birth, a third myotube was present; this staining strongly with anti-neonatal myosin but otherwise unreactive with the other antibodies against myosin heavy chains. Three days after birth a fourth myotube, with identical reactivity to the third one, became apparent. Regional variation in the expression of isomyosins, which was present since birth in the two nuclear bag fibers was further enhanced: the nuclear bag2 staining strongly with anti-slow tonic and antineonatal in the equatorial region and with decreasing intensity towards the poles, whilst with anti-slow twitch the stainability was low in the equatorial and high in the polar region. The nuclear bag1 fiber showed a homogeneous staining: high with anti-slow tonic, moderate with anti-neonatal, and displayed stainability to antislow twitch myosin in the polar regions only. No regional variation was found along the chain fiber/myotube. At seven days after birth, the pattern of reactivity was similar to that found in the adult spindles, except for the bag1 fiber which still expressed neonatal myosin.We show that slow tonic myosin is expressed from early development and it is a reliable marker of developing bag fibers. We suggest that muscle spindles are formed from special cell lineages of which the primary generation myotubes expressing slow tonic myosin represent the primordium of muscle spindles.  相似文献   

15.
The majority of skeletal muscle fibers are generated through the process of secondary myogenesis. Cell adhesion molecules such as NCAM are thought to be intricately involved in the cell-cell interactions between developing secondary and primary myotubes. During secondary myogenesis, the expression of NCAM in skeletal muscle is under strict spatial and temporal control. To investigate the role of NCAM in the regulation of primary-secondary myotube interactions and muscle fusion in vivo, we have examined muscle development in transgenic mice expressing the 125-kD muscle-specific, glycosylphosphatidylinositol- anchored isoform of human NCAM, under the control of a human skeletal muscle alpha-actin promoter that is active from about embryonic day 15 onward. Analysis of developing muscle from transgenic animals revealed a significantly lower number of myofibers encased by basal lamina at postnatal day 1 compared with nontransgenic littermates, although the total number of developing myofibers was similar. An increase in muscle fiber size and decreased numbers of VCAM-1-positive secondary myoblasts at postnatal day 1 was also found, indicating enhanced secondary myoblast fusion in the transgenic animals. There was also a significant decrease in myofiber number but no increase in overall muscle size in adult transgenic animals; other measurements such as the number of nuclei per fiber and the size of individual muscle fibers were significantly increased, again suggesting increased secondary myoblast fusion. Thus the level of NCAM in the sarcolemma is a key regulator of cell-cell interactions occurring during secondary myogenesis in vivo and fulfills the prediction derived from transfection studies in vitro that the 125-kD NCAM isoform can enhance myoblast fusion.  相似文献   

16.
The synthesis of two components of the basal lamina, laminin and type IV collagen, and their extracellular deposition on the surface of myotubes was studied in cultures of embryonic mouse and quail skeletal muscle cells and in the rat myoblast cell line L6. Production of type IV collagen and laminin by myoblasts and muscle fibroblasts was demonstrated by incorporation of radioactive amino acids into proteins and by immunoprecipitation with specific antibodies and electrophoretic analysis of labeled proteins. Immunofluorescence staining experiments revealed strong intracellular reactions with antibodies to laminin and type IV collagen in mononucleated myogenic and fibrogenic cells. Cells of fibroblast-like morphology showed a more intense staining than bipolar, spindle-shaped cells which perhaps represented postmitotic myoblasts. Myotubes did not show detectable intracellular staining. The formation of a basal lamina on myotubes was indicated by the deposition of laminin and type IV collagen on the surface of myotubes as viewed by immunofluorescence examination of unfixed cells. Staining for extracellular laminin was stronger in mass cultures than in myogenic clones, suggesting that secretion and deposition of components of the basal lamina on the myotube surface are complex processes which may involve cooperation between myogenic and fibrogenic cells.  相似文献   

17.
18.
19.
The development of muscle spindles, with respect to the expression of myosin heavy chain isoforms was studied in rat hind limbs from 17 days of gestation up to seven days after birth. Serial cross-sections were labelled with antibodies against slow tonic, slow twitch and neonatal isomyosins, myomesin, laminin and neurofilament protein. At 17-18 days of gestation, a small population of primary myotubes expressing slow tonic myosin were identified as the earliest spindle primordia. These myotubes also expressed slow twitch and, to a lesser extent, neonatal myosin. At 19-20 days of gestation a second myotube became apparent; this staining strongly with anti-neonatal myosin. A day later this secondary myotube acquired reactivity to anti-slow tonic and anti-slow twitch myosins. By birth, a third myotube was present; this staining strongly with anti-neonatal myosin but otherwise unreactive with the other antibodies against myosin heavy chains. Three days after birth a fourth myotube, with identical reactivity to the third one, became apparent. Regional variation in the expression of isomyosins, which was present since birth in the two nuclear bag fibers was further enhanced: the nuclear bag staining strongly with anti-slow tonic and antineonatal in the equatorial region and with decreasing intensity towards the poles, whilst with anti-slow twitch the stainability was low in the equatorial and high in the polar region. The nuclear bag fiber showed a homogeneous staining: high with anti-slow tonic, moderate with anti-neonatal, and displayed stainability to anti-slow twitch myosin in the polar regions only. No regional variation was found along the chain fiber/myotube.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Development of rat soleus endplate membrane following denervation at birth   总被引:1,自引:0,他引:1  
Rat soleus endplates develop some of their characteristic features before birth and others after birth. Specializations appearing before birth include a localized cluster of acetylcholine receptors (AChRs), an accumulation of acetylcholinesterase (AChE) in the synaptic basal lamina, and a cluster of nuclei near the endplate membrane. In contrast, postsynaptic membrane folds are elaborated during the first three weeks after birth. We denervated soleus muscles on postnatal day 1, before folds had appeared, and followed the subsequent development of endplate regions with light and electron microscopy. We found that the denervated endplates initiated fold formation on schedule and maintained their accumulations of AChRs, AChE, and endplate nuclei. However, the endplates stopped fold formation prematurely and eventually lost their rudimentary folds. At about the same time, the junctional AChR clusters were joined by ectopic patches of AChRs. The former endplate regions also became unusually elongated, possibly as a consequence of the lack of membrane folds. Apparently, endplate membranes have only a limited capacity for further development in the absence of both the nerve and muscle activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号