共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nucleotide sequence of the Escherichia coli tRNA(3Leu) gene 总被引:1,自引:0,他引:1
A 300-nucleotide sequence was determined which includes the tRNA(3Leu) coding region and the flanking sequences. 相似文献
3.
4.
5.
rRNA(Gm)methyltransferase from an extreme thermophile, Thermus thermophilus HB 27 specifically methylates the 2'-OH of the ribose ring of G18 in the invariant G18-G19 sequence in the D loop of tRNA. The interaction site on tRNA was presumed to be the D loop and stem structure. Destruction of tertiary structure of tRNA caused by heat resulted in a great decrease in the acceptor activity of methyl group. It was suggested by CD measurement that a conformational change of tRNA occurs when it forms an equimolar complex with Gm-methylase. 相似文献
6.
7.
采用高表达大肠杆菌tRNALeu菌株提取、纯化了亮氨酸等受体转移核糖核酸tRNALeu1和tRNALeu2.利用稳态动力学手段研究了tRNALeu1及脱镁tRNALeu1在不同稀土离子作用下与纯化亮氨酰-tRNA合成酶的氨酰化作用.tRNALeu1与亮氨酰-tRNA合成酶的结合及催化效率均受参与稀土离子的影响,表观Km值有较明显的变化.结果表明,亮氨酰-tRNA合成酶催化的tRNALeu1氨酰化反应所需Mg2+能够被稀土离子取代,但亲合性能不同. 相似文献
8.
9.
10.
Leucyl-tRNA synthetase (LeuRS), one of the class Ia aminoacyl-tRNA synthetases, joins Leu to tRNA(Leu) and excludes noncognate amino acids in protein synthesis. In this study, Escherichia coli LeuRS mutants at amino acid E292, which was located in the connective polypeptide 1 insertion region, were synthesized. Although mutated LeuRS showed little change in structure compared with wild-type LeuRS, the mutants were impaired in activity to varying extents. It was also showed that mutations did not affect the adenylation reaction. However, mutated LeuRS can mischarge tRNA(Leu) isoacceptors tRN or tRN with isoleucine to different extents. Isoleucylation of tRN was more than that of tRN. The mutant LeuRS-E292S, which was picked out as an example for the investigation of the relationship between tRNA(Leu) isoacceptors and editing function, can discriminate the Watson-Crick base pair of the first base pair of tRNA(Leu) from the wobble base pair. The tRNA(Leu) with the Watson-Crick base pair may result in more isoleucylated product than that with the wobble base pair. The same phenomenon happened to another mutant, LeuRS-A293D. It seems that the flexibility of the first base pair affects the editing reaction of LeuRS. The results indicate that the flexibility of the first base pair of tRNA(Leu) may probably affect the mischarged 3'-end of tRNA(Leu) shuttling from synthetic site to editing site and that the transferred acceptor arm of tRNA(Leu) may interact with LeuRS in the region around E292. 相似文献
11.
De Bie LG Roovers M Oudjama Y Wattiez R Tricot C Stalon V Droogmans L Bujnicki JM 《Journal of bacteriology》2003,185(10):3238-3243
We cloned, expressed, and purified the Escherichia coli YggH protein and show that it catalyzes the S-adenosyl-L-methionine-dependent formation of N(7)-methylguanosine at position 46 (m(7)G46) in tRNA. Additionally, we generated an E. coli strain with a disrupted yggH gene and show that the mutant strain lacks tRNA (m(7)G46) methyltransferase activity. 相似文献
12.
13.
14.
We have compared the molecular mechanism of thermal unfolding for native tRNA fMet (Escherichia coli) and the denatured species produced by annealing at pH 4.3. Relaxation kinetic measurements reveal that the transitions assigned to melting of TphiC, anticodon, and acceptor stem helices at neutral pH remain essentially unaltered at pH 4.3, but the transition corresponding to coupled melting of tertiary structure and dihydrouridine helix is greatly affected. The Tm of this region is more than 20 degrees higher at pH 4.3 and it has a larger enthalpy formation than in the native state. The transition dynamics are also considerably changed. In contrast to the native structure, tRNA fMet1 and tRNA fMet3 have similar tertiary structure stabilities at pH 4.3. We conclude that the structural difference between native and acid-denatured forms is localized in the tertiary structure-dihydrouridine helix cooperative interaction region of the molecule. 相似文献
15.
Structural alterations of the tRNA(m1G37)methyltransferase from Salmonella typhimurium affect tRNA substrate specificity 下载免费PDF全文
In Salmonella typhimurium, the tRNA(m1G37)methyltransferase (the product of the trmD gene) catalyzes the formation of m1G37, which is present adjacent and 3' of the anticodon (position 37) in seven tRNA species, two of which are tRNA(Pro)CGG and tRN(Pro)GGG. These two tRNA species also exist as +1 frameshift suppressor sufA6 and sufB2, respectively, both having an extra G in the anticodon loop next to and 3' of m1G37. The wild-type form of the tRNA(m1G37)methyltransferase efficiently methylates these mutant tRNAs. We have characterized one class of mutant forms of the tRNA(m1G37)methyltransferase that does not methylate the sufA6 tRNA and thereby induce extensive frameshifting resulting in a nonviable cell. Accordingly, pseudorevertants of strains containing such a mutated trmD allele in conjunction with the sufA6 allele had reduced frameshifting activity caused by either a 9-nt duplication in the sufA6tRNA or a deletion of its structural gene, or by an increased level of m1G37 in the sufA6tRNA. However, the sufB2 tRNA as well as the wild-type counterparts of these two tRNAs are efficiently methylated by this class of structural altered tRNA(m1G37)methyltransferase. Two other mutations (trmD3, trmD10) were found to reduce the methylation of all potential tRNA substrates and therefore primarily affect the catalytic activity of the enzyme. We conclude that all mutations except two (trmD3 and trmD10) do not primarily affect the catalytic activity, but rather the substrate specificity of the tRNA, because, unlike the wild-type form of the enzyme, they recognize and methylate the wild-type but not an altered form of a tRNA. Moreover, we show that the TrmD peptide is present in catalytic excess in the cell. 相似文献
16.
Chromosomal location and cloning of the gene (trmD) responsible for the synthesis of tRNA (m1G) methyltransferase in Escherichia coli K-12 总被引:5,自引:0,他引:5
Summary The trmD gene, which governs the formation of 1-methyl-guanosine (m1G) in transfer ribonucleic acid (tRNA), has been located by phage P1 transduction at 56 min on the chromosomal map of Escherichia coli. Cotransduction to tyrA at 56 min is 80%. From the Clarke and Carbon collection a ColE1-tyrA
+ hybrid plasmid was isolated, which carried the trmD
+ gene and was shown to over-produce the tRNA (m1G)methyltransferase. By subcloning restriction enzyme fragments in vitro, the trmD
+ gene was located to a 3.4 kb DNA fragment 6.5 kb clockwise from the tyrA
+ gene. The mutation trmD1, which renders the tRNA (m1G) methyltransferase temperaturesensitive both in vivo and in vitro could be complemented by trmD
+ plasmids. These results suggest that the gene trmD
+ is the structural gene for the tRNA (m1G)methyltransferase (EC 2.1.1.3.1). 相似文献
17.
18.
Properties of a dimer of tRNA I Tyr 1 (Escherichia coli) 总被引:1,自引:0,他引:1
19.
The Escherichia coli trmA gene encodes the tRNA(m5U54)methyltransferase, which catalyses the formation of m5U54 in tRNA. During the synthesis of m5U54, a covalent 62-kDa TrmA-tRNA intermediate is formed between the amino acid C324 of the enzyme and the 6-carbon of uracil. We have analysed the formation of this TrmA-tRNA intermediate and m5U54 in vivo, using mutants with altered TrmA. We show that the amino acids F188, Q190, G220, D299, R302, C324 and E358, conserved in the C-terminal catalytic domain of several RNA(m5U)methyltransferases of the COG2265 family, are important for the formation of the TrmA-tRNA intermediate and/or the enzymatic activity. These amino acids seem to have the same function as the ones present in the catalytic domain of RumA, whose structure is known, and which catalyses the formation of m5U in position 1939 of E. coli 23S rRNA. We propose that the unusually high in vivo level of the TrmA-tRNA intermediate in wild-type cells may be due to a suboptimal cellular concentration of SAM, which is required to resolve this intermediate. Our results are consistent with the modular evolution of RNA(m5U)methyltransferases, in which the specificity of the enzymatic reaction is achieved by combining the conserved catalytic domain with different RNA-binding domains. 相似文献