首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adverse effects of high temperatures on the early life stages of anadromous whitefish Coregonus lavaretus were experimentally examined by assessing fertilization success, the percentage of developmental abnormalities, cumulative mortality and the rate of embryogenesis across a range of temperatures. Temperatures ≥ 7° C increased the proportion of unfertilized and abnormally dividing eggs, deformed embryos and consequent mortality. The higher the temperature, the more severe were the effects. When eggs were fertilized and constantly incubated at various temperatures, the effective level for 50% of the eggs and embryos (EL50) of temperature was 7·6° C at the developmental stage when eye pigmentation was visible. Fewer developmental abnormalities and a lower cumulative mortality rate were observed when embryos were exposed to high temperatures from the later, gastrula stage, than from fertilization or the four‐cell stage. Irrespective of retarded development in terms of day‐degrees (i.e. the sum of daily mean temperatures), a high incubation temperature reduced the development time of C. lavaretus, leading to earlier hatching, and hatched fry were shorter than at the reference temperature of 4–5° C. Global warming will particularly pose risks for stenothermic species such as C. lavaretus, with early life stages being especially susceptible. Thus, relatively small increases and fluctuations in river water temperatures during the spawning season of this anadromous species may have substantial negative impacts on its recruitment and population persistence.  相似文献   

2.
Many species of mealybugs (Hemiptera: Pseudococcidae) are serious pests of economically important crops worldwide. We evaluated the influence of constant temperatures: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34°C on the life history and demographic parameters of Spalgis epius (Lepidoptera: Lycaenidae), a candidate biological control agent of various species of mealybugs. No eggs completed their development at 14 and 34°C. Egg-to-adult developmental time significantly decreased from 89.9 days at 16°C to 20.4 days at 32°C. The estimated lower temperature threshold of 10.2°C and 416.6 degree-days were required to complete egg-to-adult development. The mortality of immature stages was maximum at 16 and 32°C and minimum at 28°C. The highest lifetime fecundity was recorded at 28°C and it significantly decreased at 32°C. The longevity of adults was about three times more at 16°C than at 30 and 32°C. The net reproductive rate (R 0) significantly increased with increased temperatures up to 28°C and significantly decreased at 32°C. The mean generation time (T) significantly decreased with increased temperature up to 30°C, but it significantly increased at 32°C. The intrinsic rate of population increase (r m ) was highest at 30°C. The finite rate of increase (λ) was significantly greater at 30°C than at other temperatures. These data suggest that S. epius can develop, reproduce and survive in a wide range of temperatures and thus could be regarded a potential biological control agent of mealybugs.  相似文献   

3.
Prior temperature exposure affects subsequent chilling sensitivity   总被引:5,自引:0,他引:5  
The chilling sensitivity of small discs or segments of tissue excised from chillingsensitive species was significantly altered by prior temperature exposure subsequent to holding the tissue at chilling temperatures as measured by a number of physiological processes sensitive to chilling. This temperature conditioning was reversible by an additional temperature exposure before chilling, and mature-green and red-ripe tomato tissue exhibit similar chilling sensitivities. Exposing pericarp discs excised from tomato fruit (Lycopersicon esculentum Mill. cv. Castelmart), a chilling-sensitive species, to temperatures from 0 to 37°C for 6 h before chilling the discs at 2.5°C for 4 days significantly altered the rate of ion leakage from the discs, but had no effect on the rate of ion leakage before chilling and only a minimal effect on discs held at a non-chilling temperature of 12°C. Exposing chillingsensitive tissue to temperatures below that required to induce heat-shock proteins but above 20°C significantly increased chilling sensitivity as compared to tissue exposed to temperatures between 10 and 20°C. Rates of ion leakage after 4 days of chilling at 2.5°C were higher from fruit and vegetative tissue of chilling-sensitive species (Cucumis sativus L. cv. Poinsett 76, and Cucurbita pepo L. cv. Young Beauty) that were previously exposed for 6 h to 32°C than from similar tissue exposed to 12°C. Exposure to 32 and 12°C had no effect on the rate of ion leakage from fruit tissue of chilling tolerant species (Malus domestica Borkh. cv. Golden Delicious, Pyrus communis L. cv. Bartlett). Ethylene and CO2 production were higher and lycopene synthesis was lower in chilled tomato pericarp discs that were previously exposed for 6 h to 32°C than the values from tissue exposed to 12°C for 6 h before chilling. Increased chilling sensitivity induced by a 6 h exposure to 32°C could be reversed by subsequent exposure to 12°C for 6 h.  相似文献   

4.
The effects of sublethal temperatures on feeding rates and phosphorus dynamics of a freshwater snail, Goniobasis clavaeformis Lea, were determined and feeding rates were measured at four temperatures. The food source was aufwuchs labelled with radioactive phosphorus. A model was developed to elucidate the results of this type of study. Food ingestion rate increased with increasing temperature up to 14°C and then decreased at temperatures above 14°C. The elimination rate of absorbed phosphorus increased with increasing temperature throughout the entire range of experimental temperatures, 10-19.3°C. Mean retention times of absorbed phosphorus i n Goniobasis were estimated to be 34, 24, 10, and 6 days at 10, 13.8, 15, and 193°C, respectively. Mean retention time of unabsorbed 32P in the gut of this species as a function of temperature followed the same temperature relationship as that of ingestion rate. The absorption efficiency of phosphorus was estimated to be constant at about 39% for ail experimental temperatures, although the data suggest that the absorption ePRciency may have been related inversely to the rate of gut clearance or directly to the residence time of food in the gut. The equilibrium body load of phosphorus at each experimental temperature was estimated based on concentrations of stable phosphorus in the food source and the kinetics of 32P in Goniobasis. The equilibrium body burden of phosphorus in Goniobasis increased with increasing temperatures up to a maximum at 11–12°C and then decreased at temperatures above 12°C.  相似文献   

5.
Cold tolerance and dehydration in Enchytraeidae from Svalbard   总被引:4,自引:1,他引:3  
When cooled in contact with moisture, eight species of arctic Enchytraeidae from Svalbard were killed by freezing within minutes or hours at −3 and −5 °C; an exception was Enchytraeus kincaidi which survived for up to 2 days. When the temperature approached 0 °C the enchytraeids apparently tried to escape from the moist soil. The supercooling capacity of the enchytraeids was relatively low, with mean supercooling points of −5 to −8 °C. In contrast, specimens of several species were extracted from soil cores that had been frozen in their intact state at −15 °C for up to 71 days. Compared to freezing in a moist environment, higher survival rates were obtained during cooling at freezing temperatures in dry soil. Survival was recorded in species kept at −3 °C for up to 35 days, and in some species kept at −6 °C for up to 17 days. Slow warming greatly increased survival rates at −6 °C . The results strongly suggest that arctic enchytraeids avoid freezing by dehydration at subzero temperatures. In agreement with this, weight losses of up to ca. 42% of fresh weight were recorded in Mesenchytraeus spp. and of up to 55% in Enchytraeus kincaidi at water vapour pressures above ice at −3 to −6 °C. All specimens survived dehydration under these conditions. Accepted: 12 December 1997  相似文献   

6.
Temperature tolerances and relative growth rates were determined for different isolates of the tropical to warm temperate seaweed species Cladophoropsis membranacea (C. Agardh) Boergesen (Siphonodadales, Chlorophyta) and some related taxa. Most isolates of C membranacea survived undamaged at 18° C for at least 8 weeks. Lower temperatures (5°–15°C) were tolerated for shorter periods of time but caused damage to cells. All isolates survived temperatures up to 34° C, whereas isolates from the eastern Mediterranean and Red Sea survived higher temperatures up to 36°C. Growth occurred between 18° and 32° C, but an isolate from the Red Sea had an extended growth range, reaching its maximum at 35°C. Struvea anastomosans (Harvey) Piccone & Grunow, Cladophoropsis sundanensis Reinbold, and an isolate of C. membranacea from Hawaii were slightly less cold- tolerant, with damage occurring at 18°C. Upper survival temperatures were between 32° and 36° C in these taxa. Temperature response data were mapped onto a phylogenetic tree. Tolerance for low temperatures appears to be a derived character state that supports the hypothesis that C. membranacea originated from a strictly tropical ancestor. Isolates from the Canary Islands, which is near the northern limit of distribution, are ill adapted to local temperature regimes. Isolates from the eastern Mediterranean and Red Sea show some adaptation to local temperature stress. They are isolated from those in the eastern Atlantic by a thermal barrier at the entrance of the Mediterranean.  相似文献   

7.
Isolated microspore cultures of two spring triticale (x Triticosecale Wittm.) cultivars were used to examine the effect of various stress treatments (either high—32°C or low—5°C temperature with or without nitrogen/carbohydrate starvation) applied to excised anthers on the effectiveness of microspore embryogenesis induction. To quantify the effects of pretreatment conditions, the activity of antioxidative enzymes (catalase, peroxidase and superoxide dismutase) together with respiration rate and heat emission were measured. It was observed that heat shock treatment applied as the only one stress factor increased the activity of antioxidative enzymes which suggests intensive generation of reactive oxygen species. Such pretreatment effectively triggered microspore reprogramming but drastically decreased microspore viability. After low temperature treatment, the activity of antioxidative enzymes was similar to the control subjected only with the stress originated from the transfer to in vitro culture conditions. This pretreatment decreased the number of microspores entering embryogenesis but sustained cell viability and this effect prevailed in the final estimation of microspore embryogenesis effectiveness. For both, low- and high-temperature treatments, interaction with starvation stress was beneficial increasing microspore viability (at 5°C) or efficiency of embryogenesis induction (at 32°C). The latter treatment significantly reduced cell metabolic activity. Physiological background of these effects seems to be different and some hypothetical explanations have been discussed. Received data indicate that in triticale, anther preculture conditions could generate oxidative stress and change the cell metabolic activity which could next be reflected in the cell viability and the efficiency of microspore embryogenesis.  相似文献   

8.
State III respiration rates were measured in mitochondria isolated from hearts of Antarctic notothenioid fishes that differ in the expression of hemoglobin (Hb) and myoglobin (Mb). Respiration rates were measured at temperatures between 2 and 40°C in Gobionotothen gibberifrons (+Hb/+Mb), Chaenocephalus aceratus (–Hb/–Mb) and Chionodraco rastrospinosus (–Hb/+Mb). Blood osmolarity was measured in all three species and physiological buffers prepared for isolating mitochondria and measuring respiration rates. Respiration rates were higher in mitochondria from G. gibberifrons compared to those from C. aceratus at 2°C, but were similar among all species at temperatures between 10 and 26°C. Respiration rates were significantly lower in icefishes at 35 and 40°C compared to G. gibberifrons. The respiratory control ratio of isolated mitochondria was lower in C. aceratus compared to G. gibberifrons at all temperatures below 35°C. At 35 and 40°C, mitochondria were uncoupled in all species. The Arrhenius break temperature of state III respiration was similar among all three species (30.5 ± 0.9°C) and higher than values previously reported for Antarctic notothenioids, likely due to the higher osmolarity of buffers used in this study. These results suggest that differences in mitochondrial structure, correlated with the expression of oxygen-binding proteins, minimally impact mitochondrial function.  相似文献   

9.
The effect of temperature on germination of spores of Bacillus subyilis, B. megaterium. B. cereus, Clostridium sporogenes, Cl. butyricum and Cl. bifermentans was studied. At lower temperatures (+5°C to +10°C) the three Glostridium species germinated to a less extent than the three Bacillus. species. The optimum temperature for germination of the six species varied between +35°C and +45°C. The Clostridium species were more tolerant to heat than the Bacillus species.  相似文献   

10.
The seeds of Crithmmm maritimum L. were germinated floating on various concentrations of sea water up to 50% at constant temperatures of 5, 10, 15, 20, and 25°C and at alternating temperatures of 5 and 15°C. 5 and 25°C. and 15 and 25°C. Significantly higher germination was obtained at alternating than at constant temperature. When two constant temperatures at which no germination occurred were alternated, good germination was obtained. There was reduced germination and increase in time of first germination as sea water concentration increased, in the absence of sea water, high temperature caused not only severe inhibition of germination but also permanent injury to the seeds. The results help to explain the germination behaviour of the species in nature.  相似文献   

11.
Thermal tolerance shapes organisms' physiological performance and limits their biogeographic ranges. Tropical terrestrial organisms are thought to live very near their upper thermal tolerance limits, and such small thermal safety factors put them at risk from global warming. However, little is known about the thermal tolerances of tropical marine invertebrates, how they vary across different life stages, and how these limits relate to environmental conditions. We tested the tolerance to acute heat stress of five life stages of the tropical sea urchin Lytechinus variegatus collected in the Bahía Almirante, Bocas del Toro, Panama. We also investigated the impact of chronic heat stress on larval development. Fertilization, cleavage, morula development, and 4‐armed larvae tolerated 2‐h exposures to elevated temperatures between 28–32°C. Average critical temperatures (LT50) were lower for initiation of cleavage (33.5°C) and development to morula (32.5°C) than they were for fertilization (34.4°C) or for 4‐armed larvae (34.1°C). LT50 was even higher (34.8°C) for adults exposed to similar acute thermal stress, suggesting that thermal limits measured for adults may not be directly applied to the whole life history. During chronic exposure, larvae had significantly lower survival and reduced growth when reared at temperatures above 30.5°C and did not survive chronic exposures at or above 32.3°C. Environmental monitoring at and near our collection site shows that L. variegatus may already experience temperatures at which larval growth and survival are reduced during the warmest months of the year. A published local climate model further suggests that such damaging warm temperatures will be reached throughout the Bahía Almirante by 2084. Our results highlight that tropical marine invertebrates likely have small thermal safety factors during some stages in their life cycles, and that shallow‐water populations are at particular risk of near future warming.  相似文献   

12.
To understand the role of sea temperature on the population biology of the crown-of-thorns sea star Acanthaster planci, the thermal window for embryonic and larval development was investigated. In two experiments, the response of embryos and larvae across 12 temperatures from 19.4 to 36.5 °C was quantified as the percentage of individuals reaching cleavage stage embryos, blastula, gastrula, early-bipinnaria, late-bipinnaria larvae or abnormal. Measurements were made at 7 times up to 72 h post-fertilisation, with the morphometrics of larvae measured in the 72-h sample. Acanthaster planci developed at temperatures between 19.4 and 33.2 °C, with a thermal window for development to the late-bipinnaria stage between 25.6 and 31.6 °C. Development rate, normal development and larval size were optimal at 28.7 °C, with development rates remaining relatively constant up to 31.6 °C. Rates of abnormality increased steadily (early embryonic stages) above 28.7 °C and was 100 % at temperatures approaching 33 °C. These experiments provide a more detailed insight into the response of A. planci developmental stages to temperature. The present day distribution of the species in eastern Australia overlap with the optimal thermal window for development to the late-bipinnaria stage (≈25–32 °C), implying a role of temperature in controlling population distributions and abundances. Despite this, short- or long-term temperature increases may not be a major modulator of the crown-of-thorns recruitment success, population dynamics and distribution in the future as no significant change in development rates, larval survival and growth occurred within this thermal window. Therefore, moderate (1–2 °C) increases in sea temperatures caused by El Niño or near-future ocean warming may not drive an increase in developmental and settlement success. Indeed, without any acclimation to warmer temperatures expected under near-future warming (+2 to 4 °C), climate change could ultimately reduce larval survival due to elevated mortality above the optimal development temperature.  相似文献   

13.
Summary The upper thermal limit for maintenance of eleven mosquito cell lines was studied. Although most cell lines could be grown at 32°C to 34°C,Anopheles stephensi cell line could be maintained at 37°C. At higher temperatures initial growth rate was higher, but yield of cells after about a week of incubation was lower than at the standard temperature (28°C). Replication of several flaviviruses inAedes albopictus cell cultures adapted to 34.5°C was faster, and viral titers were higher than at 28°C.  相似文献   

14.
The embryonic and early larval development of laboratory reared Zagros tooth‐carp, Aphanius vladykovi Coad, 1988, are described and illustrated. Development and embryogenesis start with the external fertilization of sticky, transparent and spherical telolecithal/macrolecithal eggs with a mean diameter of 1.61± 0.12 mm and it continues with meroblastic/radial cleavage, blastulation/blastula formation, epibolic cell migration during gastrulation and organogenesis resulting in a newly hatched larvae of 5.23 ± 0.09 mm in length with attached yolk sac at about 164 hr (at 24 ± 1°C) after fertilization.  相似文献   

15.
The effects of concurrent ocean warming and acidification on Antarctic marine benthos warrant investigation as little is known about potential synergies between these climate change stressors. We examined the interactive effects of warming and acidification on fertilization and embryonic development of the ecologically important sea urchin Sterechinus neumayeri reared from fertilization in elevated temperature (+1.5°C and 3°C) and decreased pH (?0.3 and ?0.5 pH units) treatments. Fertilization using gametes from multiple males and females, to represent populations of spawners, was resilient to acidification at ambient temperature (0°C). At elevated temperatures, there was a negative interactive effect of temperature and pH on percentage of fertilization (11% reduction at 3°C). For cleavage stage embryos, there was a significant, but small reduction (6%) in the percentage of normal embryos at pH 7.5. For blastulae, a 10–11% decrease in normal development occurred in the +3°C treatments across all pH levels. Our results highlight the importance of considering the impacts of both temperature and pH in assessing the life history response of S. neumayeri in a changing polar ocean. While fertilization and development to the blastula stage were robust to levels of temperature and pH change predicted over coming decades, deleterious interactive effects were evident between these stressors at levels projected to occur by 2100 and beyond.  相似文献   

16.
Temperature (25, 22, 16, and 12°C) and salinity (32–14‰) effects on the development of the low-boreal holothurianEupentacta fraudatrix were investigated. By studying the desalination resistance of adult holothurians,E. fraudatrix was shown to be a stenohaline species. The lower salinity limit at which both the larvae and adults survived was 22‰. Fertilization and development to the stage of free-swimming blastula occurred at the bottom. Embryogenesis, a critical stage of development, was successfully completed at a salinity of 32–26‰ and temperature of 22–16°C. The fertilization and development of a free-swimming blastula proved to be most resistant to temperature changes. The blastulae that developed at lowered temperatures (16–12°C) were capable of further development and settling at the same temperatures, which is likely associated with the peculiarities of the species range. If the early development proceeded at a higher temperature (22°C), the larvae failed to adapt to and perished from sharp temperature decreases at later stages of development. Thus, the lecithotrophic larva and a short period of larval development in the pelagial larvae (3–3.5 days from fertilization to settlement) ofE. fraudatrix are caused by the stenohalinity and environmental conditions of the species and, in turn, contribute to the fact that the young animals settle in the vicinity of their parents.  相似文献   

17.
Follicle-stimulating hormone (FSH) was produced in Chinese hamster ovary (CHO) cells using a perfusion bioreactor. Perfusion culture at 37°C yielded a high cell density but a low FSH production. To investigate the effect of culture temperature in the range of 26–37°C on cell growth and FSH production, batch cultures were performed. Lowering culture temperature below 32°C resulted in growth suppression. However, specific productivity of FSH, q FSH, increased as culture temperature decreased, and the maximum q FSH of 43.4 ng/106 cells/h was obtained at 28°C, which is 13-fold higher than that at 37°C. Based on the results obtained from batch cultures, we performed perfusion cultures with two consecutive temperatures. CHO cells were grown up to 3.2 × 107 cells/ml at 37°C and culture temperature shifted down to 28°C to obtain a high FSH titer. Soon after the maximum FSH titer of 21 μg/ml was achieved, a rapid loss of not only viable cell concentration but also cell viability was observed, probably due to the low activities of enzymes related to cell growth. Thus, the extension of production period at 28°C is critical for the enhancement of FSH production, and the use of antiapoptotic genes seems to be promising.  相似文献   

18.
1. Temperature dependence of egg development of Dinocras cephalotes (Curtis) (three German and one Norwegian population) and Slovenian D. megacephala (Klapálek) was studied under a constant 14 : 10 light : dark photoperiod and constant temperature ranges of 4–24 °C and 4–18 °C, respectively. D. cephalotes was also incubated under seasonal field conditions; natural daylength and fluctuating temperatures had no modifying effect. 2. Both species have very similar lower threshold temperatures (4 and 3.5 °C, respectively), thermal demand for development (c. 600 degree days) and high dependence of mean incubation period on temperature (exponents of regressions near 1.5). Present data on D. cephalotes agree with the literature on British and Norwegian material of the same species. 3. Development occurs only at cue temperatures above the lower threshold. Cue temperatures range from 6 °C (some D. megacephala) to 14 °C (some D. cephalotes) and vary strongly within and between egg masses of D. cephalotes. Variation is not random, but seems to be genetically determined. 4. The variable temperature response renders study of effects of particular experimental regimes, and comparisons between local populations, difficult. 5. A latitudinal gradient in cue temperatures for development from 6 °C at c. 46 °N to 12 or even 14 °C at c. 61 °N seems to reflect reduced diversity at high latitudes. 6. Average success of spontaneous hatching exceeded 90% between 12 and 20 °C, but declined towards higher and lower temperatures. 7. Unhatched eggs were not dead but in parapause; development at other, higher or lower, temperatures was induced. Spontaneous plus induced hatching success approached 90%. Developing eggs rarely died; most dead eggs were apparently unfertilized. 8. Dormant plecopteran eggs are proposed to form a seed bank in stream bed sediments. Highly successful development after up to 220 days of dormancy was ascertained in Dinocras, and survival for up to 3 years is reported for other Perloidea. 9. Only systellognathan egg morphology provides options for long dormancy; the other plecopteran superfamilies, notably Nemouroidea, follow different strategies.  相似文献   

19.
The temperature tolerances of embryonic and early larval development stages of Tripneustes gratilla were investigated from 13-34°C under laboratory conditions. Zygotes showed unequal cleavage at 13°C, whereas cleavage did not occurred at 34°C. Hatching was observed between 16–31°C with maximum hatching rates observed at 22–29°C. The lower and higher temperature limits for embryonic development were approximately 22°C and 29°C, respectively. Outside of this temperature range, embryos showed abnormality at different incubation times. Early larvae of this species have the ability to survive the higher temperature limit for short periods of time. Prism and 2 arm pluteus larvae survived at temperatures between 30 and 33°C, whereas 4 arm pluteus larvae survived at temperatures between 30 and 36°C for 2 h. These results suggest that the larval temperature tolerance capability of T. gratilla is stage dependent. These findings are important for understanding the life history strategy of this sea urchin in the shallow open water environment.  相似文献   

20.
The effects of an ecologically relevant range of salinities (2, 12, 22, 32) on thermal preferences and growth of adult mummichogs Fundulus heteroclitus were determined for fish from a southern Chesapeake Bay population. Salinity did not affect the mean temperature selected by F. heteroclitus in a thermal gradient, which was identified as 26.6°C based on observations of 240 individuals. Salinity and temperature had significant and interacting effects on growth rates of F. heteroclitus measured over 12 weeks. Growth rates were highest overall and remained high over a broader range of temperatures at moderate salinities (12 and 22), while high growth rates were shifted toward lower temperatures for fish grown at a salinity of 2 and higher temperatures at a salinity of 32. Significant reductions in growth relative to the optimal conditions (28.6°C, salinity of 22) were observed at the coolest (19.6°C) and warmest (33.6°C) temperature tested at all salinities, as well as temperatures ≥ 26.6°C at a salinity of 2, ≥ 28.6°C at a salinity of 12 and ≤ 26.6°C at a salinity of 32. Growth rates provide a long-term, organismal measure of performance and results of this study indicate that performance may be reduced under conditions that the highly euryhaline F. heteroclitus can otherwise easily tolerate. The combination of reduced salinity and increased temperature that is predicted for temperate estuaries as a result of climate change may have negative effects on growth of this ecologically important species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号