首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is divided into six sections and is devoted to a study of a Malthusian parameter in relation to some stochastic models of human reproduction. In Section 1, some of the motivations underlying the study are discussed, and in Section 2 some literature on the stochastic model of population growth underlying the foundations of the paper is briefly reviewed. Section 3, which lays the foundations for the study of a more complicated model in Section 4, is devoted to the study of the Malthusian parameter in relation to a stochastic model of human reproduction formulated as a terminating renewal process. In Section 4 the Malthusian parameter is studied in relation to a terminating Markov renewal model of human reproduction, stemming from the work of Perrin and Sheps (1964). Among the mathematical results of independent interest in this section is a complete spectral decomposition of the Laplace-Stieltjes transform of the semi-Markov transition matrix in the model of Perrin and Sheps. Section 5 is devoted to the discussion of a mathematical method which allows accomodating in the model the time taken by an individual to reach reproductive age, and Section 6 ends the paper by supplying bounds for the Malthusian parameter which are valid under quite general conditions. Possible applications of the results in evaluating what influences a population policy may have on population growth are also discussed.  相似文献   

2.
Methods of calculating the distributions of the time to coalescence depend on the underlying model of population demography. In particular, the models assuming deterministic evolution of population size may not be applicable to populations evolving stochastically. Therefore the study of coalescence models involving stochastic demography is important for applications. One interesting approach which includes stochasticity is the O’Connell limit theory of genealogy in branching processes. Our paper explores how many generations are needed for the limiting distributions of O’Connell to become adequate approximations of exact distributions. We perform extensive simulations of slightly supercritical branching processes and compare the results to the O’Connell limits. Coalescent computations under the Wright-Fisher model are compared with limiting O’Connell results and with full genealogy-based predictions. These results are used to estimate the age of the so-called mitochondrial Eve, i.e., the root of the mitochondrial polymorphisms of the modern humans based on the DNA from humans and Neanderthal fossils.  相似文献   

3.
The population projection model based on generalized age-dependent branching processes developed by Mode and Busby (1981) involves the solution of a large number of renewal type equations. It is shown that these equations may be solved recursively. Such a solution has two implications. One is that the projection model may be very efficiently computerized. Second, the recursive algorithm developed has striking similarities to two traditional methods of population projection used by demographers: the Leslie matrix and cohort component methods. The results presented here associate traditional projection techniques with the theory of age-dependent branching processes.  相似文献   

4.
In this work we study the behavior of a time discrete multiregional stochastic model for a population structured in age classes and spread out in different spatial patches between which individuals can migrate. The dynamics of the population is controlled both by reproduction-survival and by migration. These processes take place at different time scales in the sense of the latter being much faster than the former. We incorporate the effect of demographic stochasticity into the population, which results in both dynamics being modelled by multitype Bienaymé–Galton–Watson branching processes. We present a multitype global model that incorporates the effect of both processes and, making use of the existence of different time scales for demography and migration, build a reduced model in which the variables correspond to the total population in each age class. We extend previous results that relate the behavior of the original and the reduced model showing that, given a large enough separation of time scales between demography and migration, we can obtain information about the behavior of the multitype global model through the study of the simpler reduced model. We concentrate on the case where the two systems are supercritical and therefore the expected number of individuals grows to infinity, and show that we can approximate the asymptotic structure of the population vector and the asymptotic population size of the original system through the study of the reduced model.  相似文献   

5.
Stochastic models of human reproduction are beginning to play significant roles in the evaluation of family planning programs. A class of stochastic processes called absorbing, agedependent, semi-Markov processes frequently arises in the construction of such models. The paper begins with a discussion of some technicalities regarding absorbing, age-dependent, semi-Markov processes. Then, an algorithm due to Littman, which makes possible the computerization of this class of stochastic processes, is presented. Briefly, Littman’s algorithm provides an efficient method for numerically solving systems of renewal type integral equations, provided the system does not contain a large number of equations. After setting down a concrete model for a large clinical trial of intrauterine devices conducted in Taiwan, the paper concludes with a discussion of a method for validating the model based on the data collected in the clinical trial. Presented at the Society for Mathematical Biology Meeting, University of Pennsylvania, Philadelphia, August 19–21, 1976.  相似文献   

6.
7.
A synthesis was made of models of branching neuronal cable structures from a full set of standard basic models. The study aimed to produce an instrument of mathematical modelling making it possible to reflect true life morphological and electrophysiological characteristics of axons and dendrites, discarding some of the restrictions and simplifications characterizing existing models of the structures mentioned. Equivalent electrical circuits of branching axons and dendrites were set up with in-series and node connections of standard four-terminal networks corresponding to basic segments with active or passive membrane. Equations were obtained for electrical processes in branching neuronal neurites, generalized in the case of multiple binary branching with arbitrary symmetry and branching structure. A difference scheme common to the whole class of models contemplated was produced and the algorithm of a numerical solution to the difference equations thus obtained was elaborated. The instrument described makes it possible to synthesize diverse models of branching axons and dendrites, offering considerably greater opportunities for modelling the main electrophysiological processes developing in these structures of electrotonus, propagation of excitation, and interaction between these two factors.State University Commemorating Tricentenary of Russo-Ukrainian Union. Dnepropetrovsk. Translated from Neirofiziologiya, Vol. 20, No. 4, pp. 471–479, July–August, 1988.  相似文献   

8.
Stochastic modelling of tumour-induced angiogenesis   总被引:1,自引:0,他引:1  
A major source of complexity in the mathematical modelling of an angiogenic process derives from the strong coupling of the kinetic parameters of the relevant stochastic branching-and-growth of the capillary network with a family of interacting underlying fields. The aim of this paper is to propose a novel mathematical approach for reducing complexity by (locally) averaging the stochastic cell, or vessel densities in the evolution equations of the underlying fields, at the mesoscale, while keeping stochasticity at lower scales, possibly at the level of individual cells or vessels. This method leads to models which are known as hybrid models. In this paper, as a working example, we apply our method to a simplified stochastic geometric model, inspired by the relevant literature, for a spatially distributed angiogenic process. The branching mechanism of blood vessels is modelled as a stochastic marked counting process describing the branching of new tips, while the network of vessels is modelled as the union of the trajectories developed by tips, according to a system of stochastic differential equations à la Langevin.  相似文献   

9.
Dispersal in animal populations is intimately linked with accession to reproduction, i.e. recruitment, and population regulation. Dispersal processes are thus a key component of population dynamics to the same extent as reproduction or mortality processes. Despite the growing interest in spatial aspects of population dynamics, the methodology for estimating dispersal, in particular in relation with recruitment, is limited. In many animal populations, in particular vertebrates, the impossibility of following individuals over space and time in an exhaustive way leads to the need to frame the estimation of dispersal in the context of capture-recapture methodology. We present here a class of age-dependent multistate capture-recapture models for the simultaneous estimation of natal dispersal, breeding dispersal, and age-dependent recruitment. These models are suitable for populations in which individuals are marked at birth and then recaptured over several sites. Under simple constraints, they can be used in populations where non-breeders are not observed, as is often the case with colonial waterbirds monitored on their breeding grounds. Biological questions can be addressed by comparing models differing in structure, according to the generalized linear model philosophy broadly used in capture-recapture methodology. We illustrate the potential of this approach by an analysis of recruitment and dispersal in the roseate tern Sterna dougallii .  相似文献   

10.
Stochastic matrix projection models are widely used to model age- or stage-structured populations with vital rates that fluctuate randomly over time. Practical applications of these models rest on qualitative properties such as the existence of a long term population growth rate, asymptotic log-normality of total population size, and weak ergodicity of population structure. We show here that these properties are shared by a general stochastic integral projection model, by using results in (Eveson in D. Phil. Thesis, University of Sussex, 1991, Eveson in Proc. Lond. Math. Soc. 70, 411-440, 1993) to extend the approach in (Lange and Holmes in J. Appl. Prob. 18, 325-344, 1981). Integral projection models allow individuals to be cross-classified by multiple attributes, either discrete or continuous, and allow the classification to change during the life cycle. These features are present in plant populations with size and age as important predictors of individual fate, populations with a persistent bank of dormant seeds or eggs, and animal species with complex life cycles. We also present a case-study based on a 6-year field study of the Illyrian thistle, Onopordum illyricum, to demonstrate how easily a stochastic integral model can be parameterized from field data and then applied using familiar matrix software and methods. Thistle demography is affected by multiple traits (size, age and a latent "quality" variable), which would be difficult to accommodate in a classical matrix model. We use the model to explore the evolution of size- and age-dependent flowering using an evolutionarily stable strategy (ESS) approach. We find close agreement between the observed flowering behavior and the predicted ESS from the stochastic model, whereas the ESS predicted from a deterministic version of the model is very different from observed flowering behavior. These results strongly suggest that the flowering strategy in O. illyricum is an adaptation to random between-year variation in vital rates.  相似文献   

11.
We consider a stochastic mechanism of the loss of resistance of cancer cells to cytotoxic agents, in terms of unstable gene amplification. Two models being different versions of a time-continuous branching random walk are presented. Both models assume strong dependence in replication and segregation of the extrachromosomal elements. The mathematical part of the paper includes the expression for the expected number of cells with a given number of gene copies in terms of modified Bessel functions. This adds to the collection of rare explicit solutions to branching process models. Original asymptotic expansions are also demonstrated. Fitting the model to experimental data yields estimates of the probabilities of gene amplification and deamplification. The thesis of the paper is that purely stochastic mechanisms may explain the dynamics of reversible drug resistance of cancer cells. Various stochastic approaches and their limitations are discussed.  相似文献   

12.
The dynamics of a cell population whose numbers are growing exponentially have been described well by a mathematical model based on the theory of age-dependent branching processes. Such a model, however, does not cover the period following exponential growth when cell differentiation curtails population size. This paper offers an extension to the branching process model to remedy this deficiency. The extended model is ideal for describing embryonic growth; its use is illustrated with data from embryonic retina. The model offers a better computational framework for the interpretation of a variety of data (growth curves of cell numbers, DNA histograms, thymidine labelling indices, FLM curves, BUdR-labelled mitoses curves) because age-distributions can be calculated at any stage of development, not just during exponential growth. Proportions of cells in the various phases of the cell cycle can be computed as growth slows. Such calculations show the gradual transition from a population dominated by cells which are young with respect to cell cycle age to one dominated by those which are old, and the effects such biases have on the proportions of cells in each phase.  相似文献   

13.
Single-type and multitype branching processes have been used to study the dynamics of a variety of stochastic birth–death type phenomena in biology and physics. Their use in epidemiology goes back to Whittle’s study of a susceptible–infected–recovered (SIR) model in the 1950s. In the case of an SIR model, the presence of only one infectious class allows for the use of single-type branching processes. Multitype branching processes allow for multiple infectious classes and have latterly been used to study metapopulation models of disease. In this article, we develop a continuous time Markov chain (CTMC) model of infectious salmon anemia virus in two patches, two CTMC models in one patch and companion multitype branching process (MTBP) models. The CTMC models are related to deterministic models which inform the choice of parameters. The probability of extinction is computed for the CTMC via numerical methods and approximated by the MTBP in the supercritical regime. The stochastic models are treated as toy models, and the parameter choices are made to highlight regions of the parameter space where CTMC and MTBP agree or disagree, without regard to biological significance. Partial extinction events are defined and their relevance discussed. A case is made for calculating the probability of such events, noting that MTBPs are not suitable for making these calculations.  相似文献   

14.
On the linear birth and death processes of biology as Markoff chains   总被引:1,自引:0,他引:1  
Stochastic Markoff models for the linear birth and death population growth processes of biology are constructed using the Q-matrix method of Doob. The relationship of the stochastic theory to the classical deterministic foundations of these processes is stressed by showing in detail how the classical postulates are mathematically transformed via the Q-matrix elements into the basis for a stationary Markoff process with continuous time parameter and denumerably many “populations states.” It is shown that the resulting stochastic models predict that the population size will fluctuate about the deterministic time curve, the extent of fluctuation being measured by the variance functions. General formulas covering all possible transitions from one population size to another are derived.  相似文献   

15.
Weak ergodicity of population evolution processes   总被引:1,自引:0,他引:1  
The weak ergodic theorems of mathematical demography state that the age distribution of a closed population is asymptotically independent of the initial distribution. In this paper, we provide a new proof of the weak ergodic theorem of the multistate population model with continuous time. The main tool to attain this purpose is a theory of multiplicative processes, which was mainly developed by Garrett Birkhoff, who showed that ergodic properties generally hold for an appropriate class of multiplicative processes. First, we construct a general theory of multiplicative processes on a Banach lattice. Next, we formulate a dynamical model of a multistate population and show that its evolution operator forms a multiplicative process on the state space of the population. Subsequently, we investigate a sufficient condition that guarantees the weak ergodicity of the multiplicative process. Finally, we prove the weak and strong ergodic theorems for the multistate population and resolve the consistency problem.  相似文献   

16.
Many deterministic models of sexually transmitted diseases, as well as population models in general, contain elements of stochastic or statistical reasoning. An example of such a model is that of Dietz and Hadeler (1988) concerning sexually transmitted diseases in which there is partnership formation and dissolution. Among the interesting formulas in this paper, which enter into the analysis of the model, are those for the expected number of partners a male or female has during a lifetime. To a probabilist such formulas suggest the possibility that some stochastic process may be constructed so as to yield these formulas as well as others that may be of interest. The principal purpose of this paper is to demonstrate that such a stochastic process does indeed exist in the form of a three state semi-Markov process in continuous time with stationary laws of evolution and with a one-step density matrix determined by four parameters which were interpreted as constant latent risk functions in the classical theory of competing risks. This construction of a semi-Markov process not only provides a framework for the systematic derivation of the formulas of Dietz and Hadeler but also suggests pathways,for extensions to the age-dependent case.This research was partially supported by NATO Grant D.890350  相似文献   

17.
Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.  相似文献   

18.
Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.  相似文献   

19.
Most of natural populations seem to be regulated in their sizes in complex ways. Particularly, the sizes of some populations change in time or generation roughly periodically. There are many theoretical studies on such population dynamics. This paper develops stochastic population models for a periodic-like population dynamics. To see the nature of such mechanism, we consider simple models of a delayed density-dependent branching process, and present by numerical simulations how such a branching process shows periodic population changes. The effects of randomly changing stationary environments on the population dynamics are also considered.  相似文献   

20.
Density-independent and density-dependent, stochastic and deterministic, discrete-time, structured models are formulated, analysed and numerically simulated. A special case of the deterministic, density-independent, structured model is the well-known Leslie age-structured model. The stochastic, density-independent model is a multitype branching process. A review of linear, density-independent models is given first, then nonlinear, density-dependent models are discussed. In the linear, density-independent structured models, transitions between states are independent of time and state. Population extinction is determined by the dominant eigenvalue λ of the transition matrix. If λ ≤ 1, then extinction occurs with probability one in the stochastic and deterministic models. However, if λ > 1, then the deterministic model has exponential growth, but in the stochastic model there is a positive probability of extinction which depends on the fixed point of the system of probability generating functions. The linear, density-independent, stochastic model is generalized to a nonlinear, density-dependent one. The dependence on state is in terms of a weighted total population size. It is shown for small initial population sizes that the density-dependent, stochastic model can be approximated by the density-independent, stochastic model and thus, the extinction behavior exhibited by the linear model occurs in the nonlinear model. In the deterministic models there is a unique stable equilibrium. Given the population does not go extinct, it is shown that the stochastic model has a quasi-stationary distribution with mean close to the stable equilibrium, provided the population size is sufficiently large. For small values of the population size, complete extinction can be observed in the simulations. However, the persistence time increases rapidly with the population size. This author received partial support by the National Science Foundation grant # DMS-9626417.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号