首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Graf ER  Zhang X  Jin SX  Linhoff MW  Craig AM 《Cell》2004,119(7):1013-1026
Formation of synaptic connections requires alignment of neurotransmitter receptors on postsynaptic dendrites opposite matching transmitter release sites on presynaptic axons. beta-neurexins and neuroligins form a trans-synaptic link at glutamate synapses. We show here that neurexin alone is sufficient to induce glutamate postsynaptic differentiation in contacting dendrites. Surprisingly, neurexin also induces GABA postsynaptic differentiation. Conversely, neuroligins induce presynaptic differentiation in both glutamate and GABA axons. Whereas neuroligins-1, -3, and -4 localize to glutamate postsynaptic sites, neuroligin-2 localizes primarily to GABA synapses. Direct aggregation of neuroligins reveals a linkage of neuroligin-2 to GABA and glutamate postsynaptic proteins, but the other neuroligins only to glutamate postsynaptic proteins. Furthermore, mislocalized expression of neuroligin-2 disperses postsynaptic proteins and disrupts synaptic transmission. Our findings indicate that the neurexin-neuroligin link is a core component mediating both GABAergic and glutamatergic synaptogenesis, and differences in isoform localization and binding affinities may contribute to appropriate differentiation and specificity.  相似文献   

2.
Neuroligins are evolutionarily conserved postsynaptic cell-adhesion molecules that function, at least in part, by forming trans-synaptic complexes with presynaptic neurexins. Different neuroligin isoforms perform diverse functions and exhibit distinct intracellular localizations, but contain similar cytoplasmic sequences whose role remains largely unknown. Here, we analysed the effect of a single amino-acid substitution (R704C) that targets a conserved arginine residue in the cytoplasmic sequence of all neuroligins, and that was associated with autism in neuroligin-4. We introduced the R704C mutation into mouse neuroligin-3 by homologous recombination, and examined its effect on synapses in vitro and in vivo. Electrophysiological and morphological studies revealed that the neuroligin-3 R704C mutation did not significantly alter synapse formation, but dramatically impaired synapse function. Specifically, the R704C mutation caused a major and selective decrease in AMPA receptor-mediated synaptic transmission in pyramidal neurons of the hippocampus, without similarly changing NMDA or GABA receptor-mediated synaptic transmission, and without detectably altering presynaptic neurotransmitter release. Our results suggest that the cytoplasmic tail of neuroligin-3 has a central role in synaptic transmission by modulating the recruitment of AMPA receptors to postsynaptic sites at excitatory synapses.  相似文献   

3.
Pathological conditions affect several stages of neurogenesis in the adult brain, including proliferation, survival, cell fate, migration, and functional integration. Here we explored how a pathological environment modulates the heterogeneous afferent synaptic input that shapes the functional properties of newly formed neurons. We analyzed the expression of adhesion molecules and other synaptic proteins on adult-born hippocampal neurons formed after electrically-induced partial status epilepticus (pSE). New cells were labeled with a GFP-retroviral vector one week after pSE. One and three weeks thereafter, synaptic proteins were present on dendritic spines and shafts, but without differences between pSE and control group. In contrast, at six weeks, we found fewer dendritic spines and decreased expression of the scaffolding protein PSD-95 on spines, without changes in expression of the adhesion molecules N-cadherin or neuroligin-1, primarily located at excitatory synapses. Moreover, we detected an increased expression of the inhibitory scaffolding protein gephyrin in newborn but not mature neurons after SE. However, this increase was not accompanied by a difference in GABA expression, and there was even a region-specific decrease in the adhesion molecule neuroligin-2 expression, both in newborn and mature neurons. Neuroligin-2 clusters co-localized with presynaptic cholecystokinin terminals, which were also reduced. The expression of neuroligin-4 and glycine receptor was unchanged. Increased postsynaptic clustering of gephyrin, without an accompanying increase in GABAergic input or neuroligin-2 and -4 expression, the latter important for clustering of GABA(A) and glycine receptors, respectively, could imply an increased but altered inhibitory connectivity specific for newborn neurons. The changes were transient and expression of both gephyrin and NL-2 was normalized 3 months post-SE. Our findings indicate that seizure-induced brain pathology alters the sub-cellular expression of synaptic adhesion molecules and scaffolding proteins related to particularly inhibitory but also excitatory synapses, which may yield functional consequences for the integration of adult-born neurons.  相似文献   

4.
Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor–associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that—like SynCAM 1—MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses.

This study shows that the MAGUK scaffold protein MPP2 is located at the periphery of postsynaptic densities in excitatory neurons, where it interacts with GABA-A receptors, thereby serving as a functional adaptor that links excitatory and inhibitory components of synaptic transmission at glutamatergic synapses.  相似文献   

5.
Postsynaptic receptor scaffold proteins play an important role for concentrating receptor molecules in postsynaptic membranes of central nervous system synapses. In particular, clustering of glycine receptors and different types of GABAA-receptors depends on the scaffold protein gephyrin, which is thought to anchor these receptors to the cytoskeleton. Eukaryotic elongation factor 1A (eEF1A) is a component of the protein synthesis machinery. In addition, it binds and bundles actin and was shown to interact with microtubules. Therefore, it might be involved in regulating the cytoskeletal dynamics in neurons and thereby modulate receptor cluster formation and/or maintenance. In this study, we demonstrate partial colocalization of gephyrin and F-actin along filamentous structures in rat hippocampal neurons. Overexpression of eEF1A in cultured hippocampal neurons results in a significant increase in number, size and density of postsynaptic gephyrin clusters after 21 days in vitro. These findings suggest that eEF1A contributes to the morphology of postsynaptic membrane specializations at inhibitory synapses.  相似文献   

6.
Synapse-associated proteins that are located at the postsynaptic density (PSD) have recently been shown to have a structural role at non-synaptic locations. Here, they act as adaptor proteins between neurotransmitter receptors and the microtubule- or microfilament-based motor-protein complexes that are responsible for transport to the PSD. The use of a common set of proteins that contain multiple domains for protein-protein interactions as both intracellular transport adaptors and synaptic scaffold proteins might contribute to the transport specificity and postsynaptic integration of receptors that underlie synapse formation and plasticity.  相似文献   

7.
Synapses, the basic units of communication in the brain, require complex molecular machinery for neurotransmitter release and reception. Whereas numerous components of excitatory postsynaptic sites have been identified, relatively few proteins are known that function at inhibitory postsynaptic sites. One such component is neuroligin-2 (NL2), an inhibitory synapse-specific cell surface protein that functions in cell adhesion and synaptic organization via binding to neurexins. In this study, we used a transgenic tandem affinity purification and mass spectrometry strategy to isolate and characterize NL2-associated complexes. Complexes purified from brains of transgenic His6-FLAG-YFP-NL2 mice showed enrichment in the Gene Ontology terms cell-cell signaling and synaptic transmission relative to complexes purified from wild type mice as a negative control. In addition to expected components including GABA receptor subunits and gephyrin, several novel proteins were isolated in association with NL2. Based on the presence of multiple components involved in trafficking and endocytosis, we showed that NL2 undergoes dynamin-dependent endocytosis in response to soluble ligand and colocalizes with VPS35 retromer in endosomes. Inhibitory synapses in brain also present a particular challenge for imaging. Whereas excitatory synapses on spines can be imaged with a fluorescent cell fill, inhibitory synapses require a molecular tag. We find the His6-FLAG-YFP-NL2 to be a suitable tag, with the unamplified YFP signal localizing appropriately to inhibitory synapses in multiple brain regions including cortex, hippocampus, thalamus, and basal ganglia. Altogether, we characterize NL2-associated complexes, demonstrate regulated trafficking of NL2, and provide tools for further proteomic and imaging studies of inhibitory synapses.  相似文献   

8.
PDZ domain proteins of synapses   总被引:12,自引:0,他引:12  
PDZ domains are protein-interaction domains that are often found in multi-domain scaffolding proteins. PDZ-containing scaffolds assemble specific proteins into large molecular complexes at defined locations in the cell. In the postsynaptic density of neuronal excitatory synapses, PDZ proteins such as PSD-95 organize glutamate receptors and their associated signalling proteins and determine the size and strength of synapses. PDZ scaffolds also function in the dynamic trafficking of synaptic proteins by assembling cargo complexes for transport by molecular motors. As key organizers that control synaptic protein composition and structure, PDZ scaffolds are themselves highly regulated by synthesis and degradation, subcellular distribution and post-translational modification.  相似文献   

9.
The postsynaptic density (PSD) of central excitatory synapses plays a key role in postsynaptic signal transduction and contains a high concentration of glutamate receptors and associated scaffold and signaling proteins. We report here a comprehensive analysis of purified PSD fractions by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We identified 374 different proteins that copurified with the PSD structure and discovered thirteen phosphorylated sites from eight proteins. These proteins were classified into numerous functional groups, implying that the signaling pathways in the PSD are complex and diverse. Furthermore, using quantitative mass spectrometry, we measured the molar concentration and relative stoichiometries of a number of glutamate receptor subunits and scaffold proteins in the postsynaptic density. Thus this proteomic study reveals crucial information about molecular abundance as well as molecular diversity in the PSD, and provides a basis for further studies on the molecular mechanisms of synaptic function and plasticity.  相似文献   

10.
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.  相似文献   

11.
Chih B  Gollan L  Scheiffele P 《Neuron》2006,51(2):171-178
Formation of synapses requires specific cellular interactions that organize pre- and postsynaptic compartments. The neuroligin-neurexin complex mediates heterophilic adhesion and can trigger assembly of glutamatergic and GABAergic synapses in cultured hippocampal neurons. Both neuroligins and neurexins are encoded by multiple genes. Alternative splicing generates large numbers of isoforms, which may engage in selective axo-dendritic interactions. We explored whether alternative splicing of the postsynaptic neuroligins modifies their activity toward glutamatergic and GABAergic axons. We find that small extracellular splice insertions restrict the function of neuroligin-1 and -2 to glutamatergic and GABAergic contacts and alter interaction with presynaptic neurexins. The neuroligin isoforms associated with GABAergic contacts bind to neurexin-1alpha and a subset of neurexin-1betas. In turn, these neurexin isoforms induce GABAergic but not glutamatergic postsynaptic differentiation. Our findings suggest that alternative splicing plays a central role in regulating selective extracellular interactions through the neuroligin-neurexin complex at glutamatergic and GABAergic synapses.  相似文献   

12.
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.  相似文献   

13.
The dynamics of postsynaptic receptor scaffold formation and remodeling at inhibitory synapses remain largely unknown. Gephyrin, which is a multimeric scaffold protein, interacts with cytoskeletal elements and stabilizes glycine receptors (GlyRs) and individual subtypes of gamma-aminobutyric acid A receptors at inhibitory postsynaptic sites. We report intracellular mobility of gephyrin transports packets over time. Gephyrin units enter and exit active synapses within several minutes. In addition to previous reports of GlyR-gephyrin interactions at plasma membranes, we show cosedimentation and coimmunoprecipitation of both proteins from vesicular fractions. Moreover, GlyR and gephyrin are cotransported within neuronal dendrites and further coimmunoprecipitate and colocalize with the dynein motor complex. As a result, the blockade of dynein function or dynein-gephyrin interaction, as well as the depolymerization of microtubules, interferes with retrograde gephyrin recruitment. Our data suggest a GlyR-gephyrin-dynein transport complex and support the concept that gephyrin-motor interactions contribute to the dynamic and activity-dependent rearrangement of postsynaptic GlyRs, a process thought to underlie the regulation of synaptic strength.  相似文献   

14.
Inhibitory synapses are also known as symmetric synapses due to their lack of prominent postsynaptic densities (PSDs) under a conventional electron microscope (EM). Recent cryo-EM tomography studies indicated that inhibitory synapses also contain PSDs, albeit with a rather thin sheet-like structure. It is not known how such inhibitory PSD (iPSD) sheet might form. Here, we demonstrate that the key inhibitory synapse scaffold protein gephyrin, when in complex with either glycine or GABAA receptors, spontaneously forms highly condensed molecular assemblies via phase separation both in solution and on supported membrane bilayers. Multivalent and specific interactions between the dimeric E-domain of gephyrin and the glycine/GABAA receptor multimer are essential for the iPSD condensate formation. Gephyrin alone does not form condensates. The linker between the G- and E-domains of gephyrin inhibits the iPSD condensate formation via autoinhibition. Phosphorylation of specific residues in the linker or binding of target proteins such as dynein light chain to the linker domain regulates gephyrin-mediated glycine/GABAA receptor clustering. Thus, analogous to excitatory PSDs, iPSDs are also formed by phase separation-mediated condensation of scaffold protein/neurotransmitter receptor complexes.Subject terms: Cell biology, Molecular biology  相似文献   

15.
Postsynaptic scaffold proteins immobilize neurotransmitter receptors in the synaptic membrane opposite to presynaptic vesicle release sites, thus ensuring efficient synaptic transmission. At inhibitory synapses in the spinal cord, the main scaffold protein gephyrin assembles in dense molecule clusters that provide binding sites for glycine receptors (GlyRs). Gephyrin and GlyRs can also interact outside of synapses, where they form receptor-scaffold complexes. Although several models for the formation of postsynaptic scaffold domains in the presence of receptor-scaffold interactions have been advanced, a clear picture of the coupled dynamics of receptors and scaffold proteins at synapses is lacking. To characterize the GlyR and gephyrin dynamics at inhibitory synapses, we performed fluorescence time-lapse imaging after photoconversion to directly visualize the exchange kinetics of recombinant Dendra2-gephyrin in cultured spinal cord neurons. Immuno-immobilization of endogenous GlyRs with specific antibodies abolished their lateral diffusion in the plasma membrane, as judged by the lack of fluorescence recovery after photobleaching. Moreover, the cross-linking of GlyRs significantly reduced the exchange of Dendra2-gephyrin compared with control conditions, suggesting that the kinetics of the synaptic gephyrin pool is strongly dependent on GlyR-gephyrin interactions. We did not observe any change in the total synaptic gephyrin levels after GlyR cross-linking, however, indicating that the number of gephyrin molecules at synapses is not primarily dependent on the exchange of GlyR-gephyrin complexes. We further show that our experimental data can be quantitatively accounted for by a model of receptor-scaffold dynamics that includes a tightly interacting receptor-scaffold domain, as well as more loosely bound receptor and scaffold populations that exchange with extrasynaptic pools. The model can make predictions for single-molecule data such as typical dwell times of synaptic proteins. Taken together, our data demonstrate the reciprocal stabilization of GlyRs and gephyrin at inhibitory synapses and provide a quantitative understanding of their dynamic organization.  相似文献   

16.
Scheiffele P  Fan J  Choih J  Fetter R  Serafini T 《Cell》2000,101(6):657-669
Most neurons form synapses exclusively with other neurons, but little is known about the molecular mechanisms mediating synaptogenesis in the central nervous system. Using an in vitro system, we demonstrate that neuroligin-1 and -2, postsynaptically localized proteins, can trigger the de novo formation of presynaptic structure. Nonneuronal cells engineered to express neuroligins induce morphological and functional presynaptic differentiation in contacting axons. This activity can be inhibited by addition of a soluble version of beta-neurexin, a receptor for neuroligin. Furthermore, addition of soluble beta-neurexin to a coculture of defined pre- and postsynaptic CNS neurons inhibits synaptic vesicle clustering in axons contacting target neurons. Our results suggest that neuroligins are part of the machinery employed during the formation and remodeling of CNS synapses.  相似文献   

17.
18.
The postsynaptic density is the ultrastructural entity containing the neurotransmitter reception apparatus of excitatory synapses in the brain. A recently identified family of multidomain proteins termed Src homology 3 domain and ankyrin repeat-containing (Shank), also known as proline-rich synapse-associated protein/somatostatin receptor-interacting protein, plays a central role in organizing the subsynaptic scaffold by interacting with several synaptic proteins including the glutamate receptors. We used the N-terminal ankyrin repeats of Shank1 and -3 to search for interacting proteins by yeast two-hybrid screening and by affinity chromatography. By cDNA sequencing and mass spectrometry the cytoskeletal protein alpha-fodrin was identified as an interacting molecule. The interaction was verified by pull-down assays and by coimmunoprecipitation experiments from transfected cells and brain extracts. Mapping of the interacting domains of alpha-fodrin revealed that the highly conserved spectrin repeat 21 is sufficient to bind to the ankyrin repeats. Both interacting partners are coexpressed widely in the rat brain and are colocalized in synapses of hippocampal cultures. Our data indicate that the Shank1 and -3 family members provide multiple independent connections between synaptic glutamate receptor complexes and the cytoskeleton.  相似文献   

19.
Neuroligins, proteins of the alpha/beta-hydrolase fold family, are found as postsynaptic transmembrane proteins whose extracellular domain associates with presynaptic partners, proteins of the neurexin family. To characterize the molecular basis of neuroligin interaction with neurexin-beta, we expressed five soluble and exportable forms of neuroligin-1 from recombinant DNA sources, by truncating the protein before the transmembrane span near its carboxyl terminus. The extracellular domain of functional neuroligin-1 associates as a dimer when analyzed by sedimentation equilibrium. By surface plasmon resonance, we established that soluble neuroligins-1 bind neurexin-1beta, but the homologous alpha/beta-hydrolase fold protein, acetylcholinesterase, failed to associate with the neurexins. Neuroligin-1 has a unique N-linked glycosylation pattern in the neuroligin family, and glycosylation and its processing modify neuroligin activity. Incomplete processing of the protein and enzymatic removal of the oligosaccharides chain or the terminal sialic acids from neuroligin-1 enhance its activity, whereas deglycosylation of neurexin-1beta did not alter its association capacity. In particular, the N-linked glycosylation at position 303 appears to be a major determinant in modifying the association with neurexin-1beta. We show here that glycosylation processing of neuroligin, in addition to mRNA splicing and gene selection, contributes to the specificity of the neurexin-beta/neuroligin-1 association.  相似文献   

20.
The earthworm somatic muscle contains myoneural synapses forming clusters of “synaptic buttons” in which the proteins syntaxin 1, synaptotagmin 1, and alpha 1B subunit of the Ca2+ channel of the N-type were identified. It is supposed that “synaptic buttons” contain a limited number of active zones, which is due to their small size (1–2 μm) and the pattern of distribution of proteins of the exoendocytotic cycle. The postsynaptic membrane of cholinergic synapses contains nicotinic acetylcholine receptors able to bind alpha-bungarotoxin. The area of the position of receptors on postsynaptic membrane is strongly restricted to the synaptic contact region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号