首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The capability of soluble CD95L trimers to trigger CD95-associated signaling pathways is drastically increased by oligomerization. The latter can be achieved, for example, by antibodies recognizing a N-terminal epitope tag in recombinant CD95L variants or by genetic engineering-enforced formation of hexamers. Using highly sensitive and accurate binding studies with recombinant CD95L variants equipped with a Gaussia princeps luciferase reporter domain, we found that oligomerization of CD95L has no major effect on CD95 occupancy. This indicates that the higher activity of oligomerized CD95L trimers is not related to an avidity-related increase in apparent affinity and points instead to a crucial role of aggregation of initially formed trimeric CD95L-CD95 complexes in CD95 activation. Furthermore, binding of soluble CD95L trimers was found to be insufficient to increase the association of CD95 with the lipid raft-containing membrane fraction. However, when Gaussia princeps luciferase-CD95L trimers were used as tracers to "mark" inactive CD95 molecules, increased association of these inactive receptors was observed upon activation of the remaining CD95 molecules by help of highly active hexameric Fc-CD95L or membrane CD95L. Moreover, in cells expressing endogenous CD95 and chimeric CD40-CD95 receptors, triggering of CD95 signaling via endogenous CD95 resulted in co-translocation of CD40-CD95 to the lipid raft fraction, whereas vice versa activation of CD95-associated pathways with Fc-CD40L via CD40-CD95 resulted in co-translocation of endogenous CD95. In sum, this shows that signaling-active CD95 molecules not only enhance their own association with the lipid raft-containing membrane fraction but also those of inactive CD95 molecules.  相似文献   

2.
Molecular mechanisms of ceramide-mediated CD95 clustering.   总被引:2,自引:0,他引:2  
Receptor clustering has been suggested as a crucial mechanism to initiate receptor signaling. Here we show that ceramide in sphingolipid-rich membrane rafts mediates clustering of CD95. Neutralization of surface ceramide or inhibition of its endogenous generation prevented CD95 clustering. Furthermore, application of ceramide at the cell surface triggered clustering of active but not inactive CD95. Apoptosis was inhibited by neutralization of surface ceramide or inhibition of ceramide release in vitro and in vivo. Thus, we conclude that surface ceramide mediates CD95 clustering, which is required for initiation of apoptosis, at least in some cell types.  相似文献   

3.
B cells are induced to express CD95 upon interaction with T cells. This interaction renders the B cells sensitive to CD95-mediated apoptosis, but ligation of proviability surface receptors is able to inhibit apoptosis induction. MHC class II is a key molecule required for Ag presentation to Th cells, productive T cell-B cell interaction, and B cell activation. We demonstrate here for the first time that MHC class II ligation also confers a rapid resistance to CD95-induced apoptosis, an affect that does not require de novo protein synthesis. Signaling through class II molecules blocks the activation of caspase 8, but does not affect the association of CD95 and Fas-associated death domain-containing protein. MHC class II ligation thus blocks proximal signaling events in the CD95-mediated apoptotic pathway.  相似文献   

4.
Most members of the death receptor family including CD95 (APO-1/Fas) have beenshown to induce both apoptosis as well as nonapoptotic pathways depending on thetissue and the circumstances. One of the nonapoptotic pathways emanating from CD95,activation of NF-?B, has recently been demonstrated to regulate invasiveness ofapoptosis resistant tumor cells. In contrast, activation of NF-?B in apoptosing cells isbelieved to be suppressed due to cleavage of various NF-?B pathway components byactive caspases that execute apoptosis. We now present data demonstrating that incertain highly CD95 apoptosis sensitive cells NF-?B is robustly activated. In factoverexpression of apoptosis inhibitors such as Bcl-2 or c-FLIPL in these cells results indecreased activation of NF-?B through CD95. We propose a model in which NF-?B isgenerally activated in certain cells but may have different functions depending onwhether cells are programmed to die or to survive.  相似文献   

5.
Protein modifications of death receptor pathways play a central role in the regulation of apoptosis. It has been demonstrated that O-glycosylation of TRAIL-receptor (R) is essential for sensitivity and resistance towards TRAIL-mediated apoptosis. In this study we ask whether and how glycosylation of CD95 (Fas/APO-1), another death receptor, influences DISC formation and procaspase-8 activation at the CD95 DISC and thereby the onset of apoptosis. We concentrated on N-glycostructure since O-glycosylation of CD95 was not found. We applied different approaches to analyze the role of CD95 N-glycosylation on the signal transduction: in silico modeling of CD95 DISC, generation of CD95 glycosylation mutants (at N136 and N118), modulation of N-glycosylation by deoxymannojirimycin (DMM) and sialidase from Vibrio cholerae (VCN). We demonstrate that N-deglycosylation of CD95 does not block DISC formation and results only in the reduction of the procaspase-8 activation at the DISC. These findings are important for the better understanding of CD95 apoptosis regulation and reveal differences between apoptotic signaling pathways of the TRAIL and CD95 systems.  相似文献   

6.
Epidermal growth factor receptor-dependent CD95-tyrosine phosphorylation was recently identified as an early step in apoptosis induction via the CD95 system (Reinehr, R., Schliess, F., and H?ussinger, D. (2003) FASEB J. 17, 731-733). The effect of peroxynitrite (ONOO(-)) on modulation of the hyperosmotic and CD95 ligand (CD95L)-induced CD95 activation process was studied. Pretreatment of hepatocytes with ONOO(-) inhibited CD95L- and hyperosmolarity-induced CD95 membrane trafficking and formation of the death-inducing signaling complex, but not epidermal growth factor receptor activation and its association with CD95. Under these conditions, however, no tyrosine phosphorylation of CD95 occurred; instead, CD95 was tyrosine-nitrated. When ONOO(-) was added after induction of CD95-tyrosine phosphorylation by CD95L or hyperosmolarity, tyrosine nitration of CD95 was largely prevented and death-inducing signaling complex formation occurred. CD95-tyrosine nitration abolished the hyperosmotic sensitization of hepatocytes toward CD95L-induced apoptosis. Additionally, in CD95-yellow fluorescent protein-transfected Huh7-hepatoma cells, ONOO(-) induced CD95 Tyr nitration and prevented CD95L-induced Tyr phosphorylation and apoptosis. Tyrosine-nitrated CD95 was also found in rat livers derived from an in vivo model of endotoxinemia. The data suggest that CD95-tyrosine nitration prevents CD95 activation by inhibiting CD95-tyrosine phosphorylation. Apparently, CD95-tyrosine phosphorylation and nitration are mutually exclusive. The data identify critical tyrosine residues of CD95 as another target of the anti-apoptotic action of NO.  相似文献   

7.
Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation.  相似文献   

8.
CD95 tyrosine phosphorylation is required for CD95 oligomerization   总被引:1,自引:0,他引:1  
Proapoptotic stimuli, such as CD95 ligand and hydrophobic bile acids induce an epidermal growth factor receptor (EGFR)-catalyzed tyrosine phosphorylation of CD95-death receptor in hepatocytes, as a prerequisite for CD95-translocation to the plasma membrane, formation of the death-inducing signalling complex and execution of apoptotic cell death. However, the molecular role played by CD95 tyrosine phosphorylation remained unclear. The present study shows that CD95-tyrosine phosphorylation is required for CD95-oligomerization. Fluorescence resonance energy transfer (FRET)-analysis in Huh7 hepatoma cells, which were cotransfected with CD95-YFP/CD95-CFP revealed that stimulation of these cells with CD95 ligand, proapoptotic bile acids or hyperosmolarity resulted within 30 min in an intracellular FRET-signal, suggestive for CD95/CD95-oligomerization. After 120 min the FRET-signal was detected in the plasma membrane, indicating translocation of the CD95/CD95-oligomer to the plasma membrane. CD95/CD95-oligomerization was abolished in presence of AG1478 or a JNK-inhibitory peptide, i.e. maneuvers known to prevent EGFR-catalyzed CD95-tyrosine phosphorylation. Transfection studies with YFP/CFP-coupled CD95-mutants, which contain tyrosine/phenylalanine-exchanges in positions 232 and 291 (CD95Y232,291F), revealed that at least one tyrosine (Y232,291)-phosphorylated CD95 is required for CD95/CD95-oligomerization. FRET-studies in mouse embryonic fibroblasts, which in contrast to Huh7 express endogenous CD95, revealed that EGF, but not CD95L induced EGFR-homomerization, whereas CD95 ligand, but not EGF resulted in EGFR/CD95-heteromerization. These findings suggest that EGFR-catalyzed CD95-tyrosine phosphorylation is involved in the CD95/CD95-oligomerization process, which is induced by proapoptotic stimuli and is required for apoptosis induction.  相似文献   

9.
10.
The role of CD95 and CD95 ligand in cancer   总被引:1,自引:0,他引:1  
CD95 (Fas/APO-1) and its ligand, CD95L, have long been viewed as a death receptor/death ligand system that mediates apoptosis induction to maintain immune homeostasis. In addition, these molecules are important in the immune elimination of virus-infected cells and cancer cells. CD95L was, therefore, considered to be useful for cancer therapy. However, major side effects have precluded its systemic use. During the last 10 years, it has been recognized that CD95 and CD95L have multiple cancer-relevant nonapoptotic and tumor-promoting activities. CD95 and CD95L were discovered to be critical survival factors for cancer cells, and were found to protect and promote cancer stem cells. We now discuss five different ways in which inhibiting or eliminating CD95L, rather than augmenting, may be beneficial for cancer therapy alone or in combination with standard chemotherapy or immune therapy.  相似文献   

11.
12.
Glucocorticoids (GC) act as potent anti-inflammatory and immunosuppressive agents on a variety of immune cells. However, the exact mechanisms of their action are still unknown. Recently, we demonstrated that GC induce apoptosis in human peripheral blood monocytes. In the present study, we examined the signaling pathway in GC-induced apoptosis. Monocyte apoptosis was demonstrated by annexin V staining, DNA laddering, and electron microscopy. Apoptosis required the activation of caspases, as different caspase inhibitors prevented GC-induced cell death. In addition, the proteolytic activation of caspase-8 and caspase-3 was observed. In additional experiments, we determined the role of the death receptor CD95 in GC-induced apoptosis. CD95 and CD95 ligand (CD95L) were up-regulated in a dose- and time-dependent manner on the cell membrane and also released after treatment with GC. Costimulation with the GC receptor antagonist mifepristone diminished monocyte apoptosis as well as CD95/CD95L expression and subsequent caspase-8 and caspase-3 activation. In contrast, the caspase inhibitor N:-acetyl-Asp-Glu-Val-Asp-aldehyde suppressed caspase-3 activation and apoptosis, but did not down-regulate caspase-8 activation and expression of CD95 and CD95L. Importantly, GC-induced monocyte apoptosis was strongly abolished by a neutralizing CD95L mAb. Therefore, our data suggest that GC-induced monocyte apoptosis is at least partially mediated by an autocrine or paracrine pathway involving the CD95/CD95L system.  相似文献   

13.
CD95/CD95L interactions and their role in autoimmunity   总被引:5,自引:0,他引:5  
CD95 (Fas/Apo-1) is a broadly expressed death receptor involved in a variety of physiological and pathological apoptotic processes. Since its discovery, defects in CD95/CD95L system have been proposed as major pathogenic factors responsible for impaired immunological tolerance to self antigens and autoimmunity. Later, analysis of altered sensitivity to CD95-induced apoptosis in cells targeted by the immune response has revealed an unexpected role for CD95 and CD95L in organ-specific autoimmunity. CD95 has been shown to be expressed and functional in virtually all cell types that are target of the organ-specific autoimmune response. Here we review some of the major findings concerning the role of CD95 in autoimmunity, in dysfunctions due to increased or decreased CD95-induced apoptosis.  相似文献   

14.
15.
16.
Expression of CD95 ligand on parenchymal, epithelial, or tumor cells has been suggested to downregulate the immune response and to control lymphocyte activation. Suppression might be mediated by induction of apoptosis or by inhibition of Ca(2+) channels upon CD95 triggering. We, therefore, aimed to employ this model to modify the immune response to an antigen presented to cytotoxic T cells by antigen-presenting MC57 cells. This model would be very useful to specifically downregulate the immune response to autoantigens in autoimmune situations. However, cytotoxic T cell lines tested in the present study were resistant to CD95 ligand expression on antigen-presenting MC57 cells. In addition, coincubation of the lymphocytes with antigen presenting cells failed to block cytotoxicity mediated by the T lymphocytes. We, therefore, conclude that single expression of CD95 ligand on antigen-presenting cells is insufficient to specifically downregulate an immune response by CD8(+-)triggered immune response.  相似文献   

17.
Angelman syndrome (AS) is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mice deficient in maternal Ube3A express elevated levels of Arc in response to synaptic activity, which coincides with severely impaired long-term potentiation (LTP) in the hippocampus and deficits in learning behaviors. In this study, we sought to test whether elevated levels of Arc interfere with brain-derived neurotrophic factor (BDNF) TrkB receptor signaling, which is known to be essential for both the induction and maintenance of LTP. We report that TrkB signaling in the AS mouse is defective, and show that reduction of Arc expression to control levels rescues the signaling deficits. Moreover, the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and elevated levels of Arc were found to impede PSD-95/TrkB association. In Ube3A deficient mice, the BDNF-induced recruitment of PSD-95, as well as PLCγ and Grb2-associated binder 1 (Gab1) with TrkB receptors was attenuated, resulting in reduced activation of PLCγ-α-calcium/calmodulin-dependent protein kinase II (CaMKII) and PI3K-Akt, but leaving the extracellular signal-regulated kinase (Erk) pathway intact. A bridged cyclic peptide (CN2097), shown by nuclear magnetic resonance (NMR) studies to uniquely bind the PDZ1 domain of PSD-95 with high affinity, decreased the interaction of Arc with PSD-95 to restore BDNF-induced TrkB/PSD-95 complex formation, signaling, and facilitate the induction of LTP in AS mice. We propose that the failure of TrkB receptor signaling at synapses in AS is directly linked to elevated levels of Arc associated with PSD-95 and PSD-95 PDZ-ligands may represent a promising approach to reverse cognitive dysfunction.  相似文献   

18.
Apoptosis is a fundamental process that contributes to tissue homeostasis, immune responses, and development. The receptor CD95, also called Fas, is a member of the tumor necrosis factor receptor (TNF-R) superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance, and various lineages of malignant cells exhibit loss-of-function mutations in this pathway; therefore, CD95 was initially classified as a tumor suppressor gene. However, more recent data indicate that in different pathophysiological contexts, this receptor can transmit non-apoptotic signals, promote inflammation, and contribute to carcinogenesis. A comparison with the initial molecular events of the TNF-R signaling pathway leading to non-apoptotic, apoptotic, and necrotic pathways reveals that CD95 is probably using different molecular mechanisms to transmit its non-apoptotic signals (NF-κB, MAPK, and PI3K). As discussed in this review, the molecular process by which the receptor switches from an apoptotic function to an inflammatory role is unknown. More importantly, the biological functions of these signals remain elusive.  相似文献   

19.
CD95 is best known for its capacity to induce apoptosis, but also activates multiple non-apoptotic signalling pathways. In particular, CD95 promotes migration and tissue invasion of apoptosis-resistant cell types, and this plays a central role in inflammation, neurobiology, and tumor biology. CD95 induces invasion by stimulating the expression of extracellular matrix (ECM)-degrading proteases, and by stimulating the formation of actin-driven cell protrusions through Rac and the cofilin pathway. In this review we discuss how CD95-initiated signalling pathways may cooperate to facilitate cell migration and tissue invasion. -  相似文献   

20.
Many anticancer drugs are able to induce apoptosis in tumor cells but the mechanisms underlying this phenomenon are poorly understood. Some authors reported that the p53 tumor suppressor gene may be responsible for drug-induced apoptosis; however, chemotherapy-induced apoptosis can also be observed in p53 negative cells. Recently, doxorubicin (DXR) was reported to induce CD95L expression to mediate apoptosis through the CD95/CD95L system. Thus, an impairment of such a system may be involved in drug resistance. We evaluated the in vitro antitumor activity of several cytotoxic drugs on two human p53-negative T-cell lymphoma cell lines, the HUT78-B1 CD95L-resistant cell line and the HUT78 parental CD95L-sensitive cell line. We demostrated by Western blotting assay that DXR and etoposide (VP-16) were able to induce CD95L expression after 4 h of treatment. In contrast, they were unable to induce the expression of p53. DXR, at concentrations ranging from 0.001 - 1 microg/ml, and VP16, at concentrations ranging from 0.05 - 1 microg/ml, were equally cytotoxic and induced apoptosis in both cell lines as assessed by fluorescence microscopy and flow cytometry analyses. Although we observed a slightly reduced percentage of apoptotic cells in HUT78B1 when compared with the parental HUT78 cells after few hours of drug exposure, this difference was no longer evident at 48 or 72 h. Similarly, the exposure of HUT78 cells to a CD95-blocking antibody partially reduced early apoptosis (24 h) without affecting the long-term effects of the drugs including cytotoxicity. Furthermore, as observed with DXR and VP-16, both the CD95L-sensitive and the CD95L-resistant cell lines resulted equally sensitive to the cytotoxic effects of a number of different cytotoxic drugs (vincristine, camptothecin, 5-fluorouracil and methotrexate). The treatment with the Caspase-3 tetrapeptide aldehyde inhibitor, Ac-DEVD-CHO, did not affect the DXR-induced apoptosis whereas it only modestly inhibited apoptosis and cytotoxicity of VP-16, while Z-VAD.FMK, a Caspase inhibitor that prevents the processing of Caspase-3 to its active form, was able to block DXR-induced apoptosis at 24 h but not at 48 h. Thus, our results do not confirm a crucial role for the CD95/CD95L system in drug-induced apoptosis and suggest the involvement of alternative p53-independent pathways at least in this experimental model system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号