首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four aquatic fungi —Apodachlya brachynema and A. minima (Leptomitales), Aphanomyces laevis (Saprolegniales), and Pythium ultimum (Peronosporales) —were tested for growth in synthetic media containing one of a variety of carbon sources. Apodachlya brachynema readily utilized five amino acids — alanine, glutamate, aspartate, proline and leucine — as well as glucose and acetate. Growth on sucrose as a carbon source was slight. Apodachlya minima differed from A. brachynema in that it could not utilize proline and leucine. Aphanomyces laevis grew well on only three of the substrates tested — glucose, alanine and glutamate. Pythium ultimum utilized glucose, sucrose, maltose, cellobiose, alanine, glutamate, aspartate, proline, asparagine, ornithine, and serine, but not eight other amino acids. All of these fungi hydrolyzed gelatin. Radioactively labeled carbon dioxide was released during incubation of Aphanomyces laevis in media containing labeled leucine, proline, or phenylalanine. These data provide evidence of some catabolism of the three substrates although none of these substrates can support the growth of Aphanomyces laevis as a sole source of carbon and nitrogen.  相似文献   

2.
In eubacteria, there are three slightly different pathways for the synthesis of m-diaminopimelate (m-DAP), which is one of the key linking units of peptidoglycan. Surprisingly, for unknown reasons, some bacteria use two of these pathways together. An example is Corynebacterium glutamicum, which uses both the succinylase and dehydrogenase pathways for m-DAP synthesis. In this study, we clone dapD and prove by enzyme experiments that this gene encodes the succinylase (Mr = 24082), initiating the succinylase pathway of m-DAP synthesis. By using gene-directed mutation, dapD, as well as dapE encoding the desuccinylase, was inactivated, thereby forcing C. glutamicum to use only the dehydrogenase pathway of m-DAP synthesis. The mutants are unable to grow on organic nitrogen sources. When supplied with low ammonium concentrations but excess carbon, their morphology is radically altered and they are less resistant to mechanical stress than the wild type. Since the succinylase has a high affinity toward its substrate and uses glutamate as the nitrogen donor, while the dehydrogenase has a low affinity and incorporates ammonium directly, the m-DAP synthesis is another example of twin activities present in bacteria for access to important metabolites such as the well-known twin activities for the synthesis of glutamate or for the uptake of potassium.  相似文献   

3.
  1. With fumarate as the terminal electron acceptor and either H2 or formate as donor, Vibrio succinogenes could grow anaerobically in a mineral medium using fumarate as the sole carbon source. Both the growth rate and the cell yield were increased when glutamate was also present in the medium.
  2. Glutamate was incorporated only into the amino acids of the glutamate family (glutamate, glutamine, proline and arginine) of the protein. The residual cell constituents were synthesized from fumarate.
  3. Pyruvate and phosphoenolpyruvate, as the central intermediates of most of the cell constituents, were formed through the action of malic enzyme and phosphoenolpyruvate synthetase. Fructose-1,6-bisphosphate aldolase was present in the bacterium suggesting that this enzyme is involved in carbohydrate synthesis.
  4. In the absence of added glutamate the amino acids of the glutamate family were synthesized from fumarate via citrate. The enzymes involved in glutamate synthesis were present.
  5. During growth in the presence of glutamate, net reducing equivalents were needed for cell synthesis. Glutamate and not H2 or formate was used as the source of these reducing equivalents. For this purpose part of the glutamate was oxidized to yield succinate and CO2.
  6. The α-ketoglutarate dehydrogenase involved in this reaction was found to use ferredoxin as the electron acceptor. The ferredoxin of the bacterium was reoxidized by means of a NADP-ferredoxin oxidoreductase. Enzymes catalyzing the reduction of NAD, NADP or ferredoxin by H2 or formate were not detected in the bacterium.
  相似文献   

4.
3-Hydroxypropionate (3-HP) is a versatile compound for chemical synthesis and a potential building block for biodegradable polymers. Cupriavidus necator H16, a facultative chemolithoautotroph, is an attractive production chassis and has been extensively studied as a model organism for biopolymer production. Here, we engineered C. necator H16 for 3-HP biosynthesis from its central metabolism. Wild type C. necator H16 can use 3-HP as a carbon source, a highly undesirable trait for a 3-HP production chassis. However, deletion of its three (methyl-)malonate semialdehyde dehydrogenases (mmsA1, mmsA2 and mmsA3) resulted in a strain that cannot grow on 3-HP as the sole carbon source, and this strain was selected as our production host. A stepwise approach was used to construct pathways for 3-HP production via β-alanine. Two additional gene deletion targets were identified during the pathway construction process. Deletion of the 3-hydroxypropionate dehydrogenase, encoded by hpdH, prevented the re-consumption of the 3-HP produced by our engineered strains, while deletion of gdhA1, annotated as a glutamate dehydrogenase, prevented the utilization of aspartate as a carbon source, one of the key pathway intermediates. The final strain carrying these deletions was able to produce up to 8 mM 3-HP heterotrophically. Furthermore, an engineered strain was able to produce 0.5 mM 3-HP under autotrophic conditions, using CO2 as sole carbon source. These results form the basis for establishing C. necator H16 as an efficient platform for the production of 3-HP and 3-HP-containing polymers.  相似文献   

5.
Summary Hydrogenomonas H 16 synthetized two chromatographically distinct forms of glutamate dehydrogenase which differed in their thermolability. One glutamate dehydrogenase utilized NAD, the other NADP as a coenzyme.Low specific activity of NAD-dependent glutamate dehydrogenase was found in cells grown with glutamate as sole nitrogen source or in cells grown with a high concentration of ammonium ions. In the presence of a low concentration of ammonium ions or in a nitrogen free medium, the specific activity of the NAD-dependent enzyme increased. Corresponding to the formation of the NAD-dependent glutamate dehydrogenase the enzyme glutamine synthetase was synthesized. The ratio of NAD-dependent glutamate dehydrogenase to glutamine synthetase activity differed only slightly in cells grown with different nitrogen and carbon sources.The NADP-dependent glutamate dehydrogenase was found in high specific activity in cells grown with an excess of ammonium ions. Under nitrogen starvation the formation of the NADP-dependent glutamate dehydrogenase ceased and the enzyme activity decreased.  相似文献   

6.
A study was done of the pathways of nitrogen assimilation in the facultative methylotrophsPseudomonas MA andPseudomonas AM1, with ammonia or methylamine as nitrogen sources and with methylamine or succinate as carbon sources. When methylamine was the sole carbon and/or nitrogen source, both organisms possessed enzymes of the glutamine synthetase/glutamate synthase pathway, but when ammonia was the nitrogen sourcePseudomonas AM1 also synthesized glutamate dehydrogenase with a pH optimum of 9.0, andPseudomonas MA elaborated both glutamate dehydrogenase (pH optimum 7.5) and alanine dehydrogenase (pH optimum 9.0). Glutamate dehydrogenase and glutamate synthase from both organisms were solely NADPH-dependent; alanine dehydrogenase was NADH-dependent. No evidence was obtained for regulation of glutamine synthetase by adenylylation in either organism, nor did glutamine synthetase appear to regulate glutamate dehydrogenase synthesis.  相似文献   

7.
This communication describes the isolation and characterization of mutants of Rhizobium trifolii which can induce nitrogenase activity in defined liquid medium. Two procedures were used for the isolation of these mutants from R. trifolii strain DT-6: (1) following chemical mutagenesis, slow growin mutants were selected which were unable to utilize NH4+ as sole source of nitrogen; (2) as spontaneous mutants resistant to the glutamate analogue L-methionine-DL-sulfoximine.Mutants (DT-71, DT-125) isolated by these procedures induced nitrogenase activity in the free-living state, whereas the parent strain lacked this property. Induction of nitrogenase activity in these mutants occurred during the late exponential phase of growth when the rate of protein synthesis was decreasing. The addition of NH4+ to a medium containing glutamate as the nitrogen-source resulted in a 50–70% reduction (repression?) of nitrogenase activity; in contrast, the rate of protein synthesis or the rate of respiration was not influenced by exogenous NH4+.Biochemistry analysis showed that these mutants (strains DT-71 and DT-125) have defects in both nitrogen and carbon metabolism. The levels of glutamate synthase (both NADP+-and NAD+-dependent activities) and glutamate dehydrogenase (NAD+-dependent activity) were markedly lower. In addition, the mutants were found to have no detectable ribitol dehydrogenase or β-galactosidase activity. These findings are discussed in relation to a mechanism of regulation of symbiotic nitrogen fixation.  相似文献   

8.
The role of glutamate dehydrogenase in plant nitrogen metabolism   总被引:24,自引:8,他引:16       下载免费PDF全文
In vivo nuclear magnetic resonance spectroscopy, in vitro gas chromatography-mass spectrometry, and automated 15N/13C mass spectrometry have been used to demonstrate that glutamate dehydrogenase is active in the oxidation of glutamate, but not in the reductive amination of 2-oxogiutarate. In cell suspension cultures of carrot (Daucus carota L. cv Chantenay), primary assimilation of ammonium occurs via the glutamate synthase pathway. Glutamate dehydrogenase is derepressed in carbonlimited cells and in such cells the function of glutamate dehydrogenase appears to be the oxidation of glutamate, thus ensuring sufficient carbon skeletons for effective functioning of the tricarboxylic acid cycle. This catabolic role for glutamate dehydrogenase implies an important regulatory function in carbon and nitrogen metabolism.  相似文献   

9.
The synthesis of the enzymes of the glycerophosphate pathway in Neurospora has been examined during exponential growth of cells on acetate as the sole carbon source. After the addition of glycerol to the media, increases in the levels of both glycerokinase and a mitochondrial glycerol-3-phosphate dehydrogenase are observed within 1 h and fully induced levels are reached within one and a half mass doublings for glycerokinase and two and a half mass doublings for glycerol-3-phosphate dehydrogenase. The increase in glycerokinase activity represents de novo synthesis of enzyme as evidenced by the absence of immunologically related protein in uninduced cell extracts. The synthesis of both glycerokinase and glycerol-3-phosphate dehydrogenase can be totally inhibited by treatment of cells with 20 μg/ml cycloheximide. During incubation with 4 mg/ml chloramphenicol, there is normal synthesis of glycerokinase but a 30–50% inhibition of mitochondrial glycerol-3-phosphate dehydrogenase synthesis. However, under these conditions, in the cytosol fraction there is a significant increase in glycerol-3-phosphate dehydrogenase specific activity, suggesting that precursors are synthesized and accumulated in the cytosol prior to incorporation into mitochondria. Upon removal of chloramphenicol, the rate of appearance of glycerol-3-phosphate dehydrogenase into the mitochondria is up to four times greater than observed in untreated controls. It is concluded that both glycerokinase and glycerol-3-phosphate dehydrogenase are synthesized on cytoplasmic ribosomes, but that final assembly of glycerol-3-phosphate dehydrogenase into mitochondria is dependent on concomitant synthesis of mitochondrial inner membrane.  相似文献   

10.
Pathway Choice in Glutamate Synthesis in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
Escherichia coli has two primary pathways for glutamate synthesis. The glutamine synthetase-glutamate synthase (GOGAT) pathway is essential for synthesis at low ammonium concentration and for regulation of the glutamine pool. The glutamate dehydrogenase (GDH) pathway is important during glucose-limited growth. It has been hypothesized that GDH is favored when the organism is stressed for energy, because the enzyme does not use ATP as does the GOGAT pathway. The results of competition experiments between the wild-type and a GDH-deficient mutant during glucose-limited growth in the presence of the nonmetabolizable glucose analog α-methylglucoside were consistent with the hypothesis. Enzyme measurements showed that levels of the enzymes of the glutamate pathways dropped as the organism passed from unrestricted to glucose-restricted growth. However, other conditions influencing pathway choice had no substantial effect on enzyme levels. Therefore, substrate availability and/or modulation of enzyme activity are likely to be major determinants of pathway choice in glutamate synthesis.  相似文献   

11.
The synthesis of glutamate from α-oxoglutarate and NH4+ by pea seedling mitochondria has been demonstrated under certain defined but non-physiological conditions. Malate acts as a hydrogen donor for the synthesis of glutamate but isocitrate is more effective, whilst succinate, in the presence or absence of ATP, is a poor donor of hydrogen. Glutamate dehydrogenase has been purified from pea mitochondria and from the cytosol. The similarities between the two preparations are interpreted to mean that the soluble glutamate dehydrogenase is released from the mitochondria during isolation. The kinetics of the mitochondrial enzyme and the effect of various metabolites on its activity have been examined. The results are discussed in relation to the proposed role of this enzyme and it is suggested that the ratio NADH-NAD+ may play a role in the control of glutamate metabolism.  相似文献   

12.
Rhodopseudomonas acidophila strain 7050 assimilated ammonia via a constitutive glutamine synthetase/glutamate synthase enzyme system.Glutamine synthetase had a K m for NH 4 + of 0.38 mM whilst the nicotinamide adenine dinucleotide linked glutamate synthase had a K m for glutamine of 0.55 mM. R. acidophila utilized only a limited range of amino acids as sole nitrogen sources: l-alanine, glutamine and asparagine. The bacterium did not grow on glutamate as sole nitrogen source and lacked glutamate dehydrogenase. When R. acidophila was grown on l-alanine as the sole nitrogen source in the absence of N2 low levels of a nicotinamide adenine dinucleotide linked l-alanine dehydrogenase were produced. It is concluded, therefore, that this reaction was not a significant route of ammonia assimilation in this bacterium except when glutamine synthetase was inhibited by methionine sulphoximine. In l-alanine grown cells the presence of an active alanine-glyoxylate aminotransferase and, on occasions, low levels of an alanine-oxaloacetate aminotransferase were detected. Alanine-2-oxo-glutarate aminotransferase could not be demonstrated in this bacterium.Abreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulphoximine  相似文献   

13.
The pathway by which glutamate is degraded as a carbon source has not previously been elucidated, but enzymatic analysis of Rhizobium meliloti CMF1 indicated that both glutamate dehydrogenase (GDH) and gamma-aminobutyrate (GABA) bypass activities were present in free living cells. However, when similar studies were performed on R. meliloti CMF1 bacteroids, isolated from alfalfa nodules, only GABA bypass activities were detectable. Both GDH and GABA bypass activities were influenced by the carbon source provided, with maximum activities being detected when glutamate was present as sole carbon and nitrogen source. Addition of a second carbon source, such as succinate, to the growth medium did not influence GDH activity but substantially decreased levels of the first enzyme of the GABA bypass, glutamate decarboxylase (GDC). Cyclic adenosine 3′5′-monophosphate (cAMP) failed to increase GDC activities in R. meliloti CMF1 cells grown in the presence of an additional carbon source. It is proposed that the GABA bypass is a major mechanism of glutamate carbon degradation in R. meliloti CMF1, a system whose enzymatic activities are influenced by the nature of the carbon source present in the growth environment.  相似文献   

14.
A study on the response of the stability and activity of crystalline ox liver nuclear and mitochondrial glutamate dehydrogenases to temperature variations has been carried out. The thermodynamic properties of the heat inactivation process and of the reaction with the substrates glutamate and α-ketoglutarate have been investigated. The heat inactivation of nuclear glutamate dehydrogenase proceeds at a faster rate than that of the mitochondrial enzyme in the temperature range 40–51 °C; the enthalpy of activation of the inactivation process is higher and the entropy is almost double, compared to the values of mitochondrial glutamate dehydrogenase. The effect of temperature on the maximal velocity shows that, with both glutamate and α-ketoglutarate, the enthalpy of activation with nuclear glutamate dehydrogenase is double and the decrease in entropy almost half of the values of the mitochondrial enzyme. The variation of the apparent Km with temperature shows a decrease of the affinity of both enzymes for glutamate, with no major difference in the thermodynamic properties of the reaction. With α-ketoglutarate, on the other hand, the affinity of nuclear glutamate dehydrogenase decreased, whereas that of the mitochondrial enzyme increased with temperature. The process is therefore exothermic with the former enzyme, endothermic with the latter; furthermore, it occurs with a decrease in enthropy with nuclear glutamate dehydrogenase, but with a large increase with the mitochondrial enzyme. The studies on the effect of temperature on the activity were carried out in the range 20–44 °C.  相似文献   

15.
A threonine deaminase susceptible to inhibition by isoleucine was purified over 3,000-fold from extracts of Pseudomonas multivorans, a bacterium able to use threonine or α-ketobutyrate as sole source of carbon and energy. The enzyme was characterized with respect to molecular weight, dissociation to subunits, and apparent affinities for threonine, isoleucine, and several other ligands. Certain features of the enzyme including its reversible dissociation to subunits, its high constitutive activity, its marked stability, and high apparent orders of binding for threonine and isoleucine were unusual compared to those of isoleucine-inhibitable enzymes from other bacteria. These findings suggested some relationship between properties of the enzyme and the ability of P. multivorans to use threonine as sole carbon source. However, mutant studies ruled out a direct role of the enzyme in threonine catabolism and indicated that another enzyme, threonine dehydrogenase, is essential for growth on threonine.  相似文献   

16.
On the basis of allyalcohol resistance, Saccharomyces cerevisiae mutanta were isolated that were deficient in alcohol dehydrogenase (ADH). The mutants were divided into three classes by their different ADH isozyme pattern obtained after starch-gel electrophoresis: adc mutants that did not produce the constitutive ADH, adr mutants from which the glucose repressible enzyme (ADHII) was absent, and adm mutants deficient in ADH activity associated with the mitochondria.Genetic analysis showed that two genes control synthesis of the glucose repressible enzyme ADHII, one gene the constitutive ADHI and a fourth nuclear gene the mitochondrial ADH. None of these four genes showed any linkage.The various mutant types did not show drastic effects on yeast growth on media containing glucose or ethanol as sole carbon sources.  相似文献   

17.
When Lemna gibba cultures, grown on medium containing l-glutamate as the sole nitrogen source are transferred to medium in which ammonium is the only source of nitrogen, the activity of a NAD-dependent l-glutamate dehydrogenase (GDH) increases approximately 5-fold over 3 days. Upon re-transfer to glutamate medium the activity declines to its initial value after a further 6 days. The rise in activity is independent of the presence of EDTA and is not the result of an increase in the ease with which the enzyme can be extracted. p-Fluoro-dl-phenylalanine, azetidine-2-carboxylic acid and puromycin but not d-threo-chloramphenicol, erythromycin or lincomycin inhibit the increase when included in ammonium medium. These observations, together with those obtained from the use of a deuterium oxide-labelling technique, suggest that the increase in GDH activity is due to de novo synthesis on 80S ribosomes.  相似文献   

18.
Klebsiella pneumoniae is a nosocomial pathogen frequently isolated from opportunistic infections, especially in clinical environments. In spite of its potential pathogenicity, this microorganism has several metabolic potentials that could be used in biotechnology applications. K. pneumoniae is able to metabolize glycerol as a sole source of carbon and energy. 1,3-Propanediol dehydrogenase is the core of the metabolic pathway for the use of glycerol. We have determined the crystallographic structure of 1,3-propanediol dehydrogenase, a type III Fe-NAD-dependent alcohol dehydrogenase, at 2.7-Å resolution. The structure of the enzyme monomer is closely related to that of other alcohol dehydrogenases. The overall arrangement of the enzyme showed a decameric structure, formed by a pentamer of dimers, which is the catalytic form of the enzyme. Dimers are associated by strong ionic interactions that are responsible for the highly stable in vivo packing of the enzyme. Kinetic properties of the enzyme as determined in the article would suggest that this decameric arrangement is related to the cooperativity between monomers.  相似文献   

19.
  • 1.1. Halobacterium halobium has two chromatographically distinct forms of glutamate dehydrogenase which differ in their thermolability and other properties. One glutamate dehydrogenase utilizes NAD, the other NADP as a coenzyme.
  • 2.2. The NADP-specific glutamate dehydrogenase (EC 1.4.1.4) was purified 65-fold from crude extracts of H. halobium.
  • 3.3. The Michaelis constants for 2-oxoglutarate (13.3 mM), ammonium (3.1 mM) and NADPH (0.077 mM) indicate that the enzyme catalyzes in vivo the formation of glutamate from ammonium and 2-oxoglutarate.
  • 4.4. The amination of 2-oxoglutarate by NADP-specific glutamate dehydrogenase is optimal at the pH value of 8.0–8.5. The optimal NaCl or KCl concentration for the reaction is 1.6 M.
  • 5.5. None of the several metabolites tested for a possible role in the regulation of glutamate dehydrogenase activity appeared to exert an appreciable influence on the enzyme.
  • 6.6. NAD- and NADP-dependent glutamate dehydrogenases from H. halobium showed apparent molecular weights of 148,000 and 215,000 respectively.
  相似文献   

20.
Bacillus fastidiosus was able to grow on glycerol as a carbon source when allantoin or urate was used as nitrogen source. The primary assimilatory enzyme for glycerol was glycerol kinase; glycerol dehydrogenase could not be detected. The glycerol kinase activity was increased 30-fold in allantoin/glycerol-grown cells as compared to alantoin-grown cells. Under both growth conditions high levels of glutamate dehydrogenase were found. Glutamine synthetase and glutamate synthase activities could not be demonstrated, while low levels of alanine dehydrogenase were present. It is concluded that B. fastidiosus assimilates ammonia by the NADP-dependent glutamate dehydrogenase.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号