首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
To systematically evaluate the modification of lens proteins by aldose and dicarbonyl sugars during the glycation process, the sugar-dependent incorporation of Lys and Arg, SDS–PAGE profile, amino acid analysis, and fluorophore formation (excitation 370 nm/emission 440 nm) were determined. Reaction mixtures with glycolaldehyde, glyceraldehyde, threose and 3-deoxythreosone showed the greatest extent of Lys crosslinking and fluorescence formation. An increase in fluorescence intensity, but a decrease in Lys and Arg crosslinking, was found with glyoxal, methylglyoxal, hydroxypyruvaldehyde and threosone. In addition glyoxal, methylglyoxal and hydroxypyruvaldehyde caused the specific loss of Arg residues in lens proteins. Reaction mixtures with xylose, xylosone, glucose, glucosone and 3-deoxyglucosone exhibited the least protein modifications; however, incubation with 3-deoxyxylosone resulted in extensive loss of Lys and Arg residues, a higher extent of Lys or Arg crosslinking and significant fluorophore formation. Each sugar exhibited unique characteristics in the modification of lens proteins by glycation. To validly compare the protein modifications occurring during glycation reactions, a systematic approach was employed to evaluate the potential role of aldose and dicarbonyl sugars in protein modification.  相似文献   

2.
Kose S  Imamoto N  Yoneda Y 《FEBS letters》1999,453(3):327-330
Carbohydrates with reactive aldehyde and ketone groups can undergo Maillard reactions with proteins to form advanced glycation end products. Oxalate monoalkylamide was identified as one of the advanced glycation end products formed from the Maillard reaction of ascorbate with proteins. In these experiments, we have analyzed human lens proteins immunochemically for the presence of oxalate monoalkylamide. Oxalate monoalkylamide was absent in most of the very young lenses but was present in old and cataractous lenses. The highest levels were found in senile brunescent lenses. Incubation experiments using bovine lens proteins revealed that oxalate monoalkylamide could form from the ascorbate degradation products, 2,3-diketogulonate and L-threose. These data provide the first evidence for oxalate monoalkylamide in vivo and suggest that ascorbate degradation and its binding to proteins are enhanced during lens aging and cataract formation.  相似文献   

3.
The reaction of lens proteins with sugars over time results in the formation of protein-bound advanced glycation end products (AGEs). The most damaging element of AGE formation may be the synthesis of protein-protein cross-links in long-lived proteins, such as collagen or lens crystallins. A quantitative cross-linking assay, involving the sugar-dependent incorporation of [U-(14)C]lysine into protein, was employed to determine the efficacy of a variety of potential cross-linking inhibitors. Reaction mixtures contained 5.0 mM L-threose, 2.5 microCi [(14)C]lysine (1.0 mCi/mmole), 5.0 mg/ml bovine lens proteins, 0-10 mM inhibitor and 1.0 mM DTPA in 100 mM phosphate buffer, pH 7.0. Of 17 potential inhibitors tested, 11 showed 50% inhibition or less at 10 mM. The dicarbonyl-reactive compounds 2-aminoguanidine, semicarbazide and o-phenylenediamine inhibited 50% at 2.0 mM, whereas 10 mM dimethylguanidine had no effect. Several amino acids failed to compete effectively with [(14)C]lysine in the cross-linking assay; however, cysteine inhibited 50% at 1.0 mM. This was likely due to the sulfhydryl group of cysteine, because 3-mercaptopropionic acid and reduced glutathione exhibited similar activity. Sodium metabisulfite had the highest activity, inhibiting 50% at only 0.1-0.2 mM. Protein dimer formation, as determined by SDS-PAGE, was inhibited in a quantitatively similar manner. The dicarbonyl-reactive inhibitors and the sulfur-containing compounds produced similar inhibition curves for [(14)C]lysine incorporation over a 3 week assay with 250 mM glucose. A much lesser effect was observed on either the incorporation of [(14)C]glucose, or on fluorophore formation (360/420 nm), suggesting that non-cross-link fluorophores were also formed. The inhibitor data were consistent with cross-linking by a dicarbonyl intermediate. This was supported by the fact that the inhibitors were uniformly less effective when the 5.0 mM threose was replaced by either 3.0 mM 3-deoxythreosone or 3.0 mM threosone.  相似文献   

4.
Cataract is generally associated with the breakdown of the lens microarchitecture. Age-dependent chemical modifications and cross-linking of proteins are the major pathways for development of lens opacity. The specific alterations in lens proteins caused by glycation with four carbonyl metabolites, fructose, methylglyoxal, glyoxal, and ascorbic acid, were investigated. Decrease in intensity of tryptophan related fluorescence and level of reduced protein sulfhydryl groups, parameters that are indicative for changes in protein conformation, were observed after reaction with all studied carbonyl compounds. Protein carbonyl content, an index for oxidative damage to proteins, was strongly enhanced in methylglyoxal-treated proteins. Cross-linking of glycated proteins was confirmed by polyacrylamide electrophoresis. alpha-Oxoaldehydes were the most reactive in protein aggregation. They also formed specific chromophores absorbing UV light above 300 nm. Significant loss in lactate dehydrogenase activity resulted from incubation with methylglyoxal, followed by glyoxal and ascorbic acid. The results obtained showed that alterations in lens proteins do not follow the specific reactivity of studied carbonyl compounds. Despite the similarity in chemical structures of alpha-oxoaldehydes and ascorbic acid degradation products, they cause specific alterations in lens protein structure with different biological consequences.  相似文献   

5.
Proteins are subject of posttranslational modification by sugars and their degradation products in vivo. The process is often referred as glycation. L-Dehydroascorbic acid (DHA), an oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. A new product of modification of lysine epsilon -amino group by DHA was discovered as a result of the interaction between Boc-Lys and dehydroascorbic acid. The chromatographic and spectral analyses revealed that the structure of the product was 1-(5-ammonio-5-carboxypentyl)-3-oxido-4-(hydroxymethyl)pyridinium. The same compound was isolated from DHA modified calf lens protein after hydrolysis and chromatographic separation. The study confirmed that L-erythrulose is an important intermediate of modification of proteins by DHA. The structure of the reported product and in vitro experiments suggested that L-erythrulose could further transform to L-threose, L-erythrose and glycolaldehyde under conditions similar to physiological. The present study revealed that the modification of epsilon -amino groups of lysine residues by DHA is a complex process and could involve a number of reactive carbonyl species.  相似文献   

6.
The autoxidation of ascorbic acid (ASA) leads to the formation of compounds which are capable of glycating and crosslinking proteins in vitro. When the soluble crystallins from bovine lens were incubated with ASA in the presence of sodium cyanoborohydride, a single major adduct was observed, whose appearance correlated with the loss of lysine. When polylysine was reacted with equivalent amounts of ASA under the same conditions, this product represented half of the total lysine content after four weeks of incubation at 37 degrees C. This adduct was isolated and identified as N epsilon-(carboxymethyl)lysine (CML) by TLC, GC/MS and amino acid analysis. Several oxidation products of ASA were each reacted with polylysine in the presence of sodium cyanoborohydride to identify the reactive species. CML was the major adduct formed with either ASA and dehydroascorbic acid (DHA). Markedly diminished amounts were seen with L-2,3-diketogulonic acid (DKG), and L-threose, while no CML was formed with L-threo-pentos-2-ulose (L-xylosone). In the absence of sodium cyanoborohydride the yield of CML was similar with each of the ASA autoxidation products and required oxygen. Reactions with [1-14C]ASA gave rise to [14C]CML, but only with NaCNBH3 present. At least two routes of CML formation appear to be operating depending upon whether NaCNBH3 is present to reduce the putative Schiff base formed between lysine and DHA.  相似文献   

7.
Tryptophan can be oxidized in the eye lens by both enzymatic and non-enzymatic mechanisms. Oxidation products, such as kynurenines, react with proteins to form yellow-brown pigments and cause covalent cross-linking. We generated a monoclonal antibody against 3-hydroxykynurenine (3OHKYN)-modified keyhole limpet hemocyanin and characterized it using 3OHKYN-modified amino acids and proteins. This monoclonal antibody reacted with 3OHKYN-modified N(alpha)-acetyl lysine, N(alpha)-acetyl histidine, N(alpha)-acetyl arginine, and N(alpha)-acetyl cysteine. Among the several tryptophan oxidation products tested, 3OHKYN produced the highest concentration of antigen when reacted with human lens proteins. A major antigen from the reaction of 3OHKYN and N(alpha)-acetyl lysine was purified by reversed phase high pressure liquid chromatography, which was characterized by spectroscopy and identified as 2-amino-3-hydroxyl-alpha-((5S)-5-acetamino-5-carboxypentyl amino)-gamma-oxo-benzene butanoic acid. Enzyme-digested cataractous lens proteins displayed 3OHKYN-derived modifications. Immunohistochemistry revealed 3OHKYN modifications in proteins associated with the lens fiber cell plasma membrane. The low molecular products (<10,000 Da) isolated from normal lenses after reaction with glucosidase followed by incubation with proteins generated 3OHKYN-derived products. Human lens epithelial cells incubated with 3OHKYN showed intense immunoreactivity. We also investigated the effect of glycation on tryptophan oxidation and kynurenine-mediated modification of lens proteins. The results showed that glycation products failed to oxidize tryptophan or generate kynurenine modifications in proteins. Our studies indicate that 3OHKYN modifies lens proteins independent of glycation to form products that may contribute to protein aggregation and browning during cataract formation.  相似文献   

8.
吡哆胺-一种天然的AGEs/ALEs抑制剂   总被引:2,自引:0,他引:2  
衰老及老年相关疾病,如:糖尿病、动脉粥状硬化、各种神经退行性疾病等,与组织蛋白氧化修饰密切相关.在造成蛋白质氧化修饰的反应中,非酶糖基化和脂质过氧化是最重要的两类,它们最终形成非酶糖基化终产物(AGEs)和脂过氧化终产物(ALEs).基于羰基毒害衰老理论,具有强烈反应活性的羰基类化合物是非酶糖基化和脂质过氧化的共同中间产物,它们是造成蛋白修饰的直接原因之一.吡哆胺是维生素B6的一种天然成分;由于它能直接清除羰基类化合物,从而抑制AGEs/ALEs的生成;又因为吡哆胺对人体副作用很小.因此吡哆胺有望成为一种新型的防治多种老年相关疾病的药物.  相似文献   

9.
J J Lee  L M Principe  M J Fasco 《Biochemistry》1985,24(25):7063-7070
A partially purified, 200S submicrosomal fraction exhibiting thiol-dependent vitamin K1 (vitamin K) and epoxide reductase activities has been isolated by partial solubilization of rat hepatic microsomes with sodium cholate and separation by centrifugation at 105 000 g into a discontinuous sucrose gradient. At pH 7.4, the rates of vitamin K and vitamin K 2,3-epoxide reduction per milligram of 200S fraction protein were equivalent and were 2.5-3.0 times faster than in microsomes. Reduction of vitamin K 2,3-epoxide occurred in a tightly coupled, two-step reaction initially to vitamin K and subsequently to vitamin K hydroquinone (vitamin KH2). Incorporation of glycerol or sucrose and of sodium cholate into reaction mixtures equivalently affected the rates of both vitamin K and vitamin K 2,3-epoxide reduction, but in the case of epoxide metabolism, the ratios of vitamin KH2/vitamin K were much lower, suggesting that the second reaction has been partially uncoupled from the first. A 14 000-17 000-dalton warfarin-sensitive protein (WSP) that participates in vitamin K and vitamin K 2,3-epoxide reduction in the 200S fraction was identified by incorporation of N-[3H]ethylmaleimide ([3H]NEM) into the catalytically active reduced form of one or more attached disulfides. Reduction of WSP with dithiothreitol was required for reaction with [3H]NEM, and the substrates vitamin K and vitamin K 2,3-epoxide and the inhibitor warfarin all effectively blocked the reaction. 2-Mercaptoethanol could not substitute for dithiothreitol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Incubation of proteins with glucose leads to their non-enzymatic glycation and formation of Amadori products known as an early glycation product. Oxidative cleavage of Amadori products is considered as a major route to advanced glycation endproducts (AGEs) formation in vivo. Non-enzymatic glycation of proteins or Maillard reaction is increased in diabetes mellitus due to hyperglycemia and leads to several complications such as blindness, heart disease, nerve damage, and kidney failure. The early and advanced glycation products are accumulated in plasma and tissues of diabetic patients and cause production of autoantibodies against corresponding products. The advanced glycation products are also associated with other diseases like cancer. This review summarizes current knowledge of these stage specific glycated products as common and early diagnostic biomarkers for the associated diseases and the complications with the aim of a novel therapeutic target for the diseases.  相似文献   

11.
The similarity of the yellow chromophores isolated from human cataracts with those from ascorbic acid modified calf lens proteins was recently published [Biochim. Biophys. Acta 1537 (2001) 14]. The data presented here additionally quantify age-dependent increases in individual yellow chromophores and fluorophores in the water-insoluble fraction of normal human lens. The water-insoluble fraction of individual normal human lens was isolated, solubilized by sonication and digested with a battery of proteolytic enzymes under argon to prevent oxidation. The level of A(330)-absorbing yellow chromophores, 350/450 nm fluorophores and total water-insoluble (WI) protein were quantified in each lens. The total yellow chromophores and fluorophores accumulated in parallel with the increase in the water-insoluble protein fraction during aging. The digest from each single human lens was then subjected to Bio-Gel P-2 size-exclusion chromatography. The fractions obtained were further separated by a semi-preparative prodigy C-18 high-performance liquid chromatography (RP-HPLC). Bio-Gel P-2 chromatography showed four major fractions, each of which increased with age. RP-HPLC of the amino acid peak resolved five major A(330)-absorbing peaks and eight fluorescent peaks, and each peak increased coordinately with age. A late-eluting peak, which contained hydrophobic amino acids increased significantly after age 60.Aliquots from an in vitro glycation of calf lens proteins by ascorbic acid were removed and subjected to the same enzymatic digestion. Ascorbic acid-modified calf lens protein digests showed an almost identical profile of chromophores, which also increased in a time-dependent manner. The late-eluting peak, however, did not increase with the time of glycation and may not be an advanced glycation endproduct (AGE) product. The data indicate that the total water-insoluble proteins, individual yellow chromophores and fluorophores increased equally both with aging in normal human lens and during ascorbate glycation in vitro. The major protein modifications, which accumulate during aging, therefore, appear to be AGEs. Whereas the late-eluting peak, which showed poor correlation to ascorbylation, may represent UV filter compounds bound to lens proteins.  相似文献   

12.
Prolonged incubation of protein with reducing sugar proceeds through a series of reactions involving early stage products to the advanced glycation end products with fluorescence, brown color, and cross-linking. Known collectively as the Maillard reaction, these changes have been suggested as factors in diabetic complications and the aging process. The early stage products have been demonstrated in vivo, but evidence for the presence in vivo of the advanced glycation end products has been limited. We sought to provide immunochemical evidence by the preparation and use of polyclonal and monoclonal antibodies to these end products (Horiuchi, S., Araki, N., and Morino, Y. (1991) J. Biol. Chem. 266, 7329-7332) as probes to identify and quantitate such compounds in human lens crystallins. Neither of the antibodies reacted with extracts from infant lenses, but fractions from adult lenses showed a significant reactivity, correlating with lens age. Our findings provide the first immunochemical evidence that human lens crystallins contain advanced glycation end products and that these products increase with tissue age.  相似文献   

13.
The degradation of L-ascorbate (AsA) and its primary oxidation products, L-dehydroascorbate (DHA) and 2,3-L-diketogulonate (2, 3-DKG) were studied under physiological conditions. Analysis determined that L-erythrulose (ERU) and oxalate were the primary degradation products of ASA regardless of which compound was used as the starting material. The identification of ERU was determined by proton decoupled (13)C-nuclear magnetic resonance spectroscopy, and was quantified by high performance liquid chromatography, and enzymatic analysis. The molar yield of ERU from 2,3-DKG at pH 7.0 37 degrees C and limiting O(2)97%. This novel ketose product of AsA degradation, was additionally qualitatively identified by gas-liquid chromatography, and by thin layer chromatography. ERU is an extremely reactive ketose, which rapidly glycates and crosslinks proteins, and therefore may mediate the AsA-dependent modification of protein (ascorbylation) seen in vitro, and also proposed to occur in vivo in human lens during diabetic and age-onset cataract formation.  相似文献   

14.
This study intends to clarify the ability of different carbonyl-containing lens metabolites to form advanced glycation end products, which possess photosensitizer activity and to investigate whether these modified proteins could be implicated in lens photodamage. Calf lens protein was experimentally glycated with either methylglyoxal, glyoxal, ascorbic acid, or fructose to obtain models of aged and diabetic cataractous lenses. Being exposed to 200 J/cm 2 UVA radiation the model glycated proteins produced 2-3-fold more singlet oxygen compared to the unmodified protein and the superoxide radical formation was 30-80% higher than by the native protein. Ascorbylated proteins demonstrated the highest photosensitizer activity. Biological responses of glycation-related photosensitizers were studied on cultured lens epithelial cells irradiated with 40 J/cm 2 UVA. Tissue culture studies revealed a significant increase in thiobarbituric acid reactive substances in the culture medium of lens epithelial cells after irradiation and treatment with glycated proteins. Lens proteins had a protective effect against UVA induced cytotoxicity, however, this protective effect decreased with the increasing photosensitizer activity of experimentally glycated proteins. The documented glycation-related photosensitization could explain the accelerated pathogenic changes in human lens at advanced age and under diabetic conditions.  相似文献   

15.
This study intends to clarify the ability of different carbonyl-containing lens metabolites to form advanced glycation end products, which possess photosensitizer activity and to investigate whether these modified proteins could be implicated in lens photodamage. Calf lens protein was experimentally glycated with either methylglyoxal, glyoxal, ascorbic acid, or fructose to obtain models of aged and diabetic cataractous lenses. Being exposed to 200 J/cm 2 UVA radiation the model glycated proteins produced 2-3-fold more singlet oxygen compared to the unmodified protein and the superoxide radical formation was 30-80% higher than by the native protein. Ascorbylated proteins demonstrated the highest photosensitizer activity. Biological responses of glycation-related photosensitizers were studied on cultured lens epithelial cells irradiated with 40 J/cm 2 UVA. Tissue culture studies revealed a significant increase in thiobarbituric acid reactive substances in the culture medium of lens epithelial cells after irradiation and treatment with glycated proteins. Lens proteins had a protective effect against UVA induced cytotoxicity, however, this protective effect decreased with the increasing photosensitizer activity of experimentally glycated proteins. The documented glycation-related photosensitization could explain the accelerated pathogenic changes in human lens at advanced age and under diabetic conditions.  相似文献   

16.
17.
Histone H1 as a Reporter Protein to Investigate Glycation in Bacteria   总被引:2,自引:0,他引:2  
Nonenzymatic glycosylation (glycation) of proteins is a multistage chemical process starting as a condensation reaction between reducing sugars and primary amino groups (mainly from the side chains of Lis and Arg) and ending up with formation of complex heterocyclic compounds called advanced glycation end products (AGEs). For a long time, glycation has been attributed to the long-lived eukaryotes (including in humans) only. In a recent study, we showed that glycation also occurs in bacteria. The present study aims to prove that bacterial cytoplasm contains soluble glycating compounds. To this end, Lis/Arg-rich histone H1 isolated from rat liver was treated with deproteinized Escherichia coli cytoplasm through a dialysis membrane. This treatment leads to accumulation of AGEs as well as to a remarkable degradation of the reporter protein on storage at 4°C. Our results indicate also that glycation can be inhibited by acetylsalicylic acid (aspirin), thiamine (vitamin B1), and pyridoxine (vitamin B6).  相似文献   

18.
Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320–400 nm, 100 milliwatts/cm2, 45 min to 2 h), young human lenses (20–36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans.  相似文献   

19.
Chromatographic evidence supporting the similarity of the yellow chromophores isolated from aged human and brunescent cataract lenses and calf lens proteins ascorbylated in vitro is presented. The water-insoluble fraction from early stage brunescent cataract lenses was solubilized by sonication (WISS) and digested with a battery of proteolytic enzymes under argon to prevent oxidation. Also, calf lens proteins were incubated with ascorbic acid for 4 weeks in air and submitted to the same digestion. The percent hydrolysis of the proteins to amino acids was approximately 90% in every case. The content of yellow chromophores was 90, 130 and 250 A(330) units/g protein for normal human WISS, cataract WISS and ascorbate-modified bovine lens proteins respectively. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column. Six peaks were obtained for both preparations and pooled. Side by side thin-layer chromatography (TLC) of each peak showed very similar R(f) values for the long wavelength-absorbing fluorophores. Glycation with [U-(14)C]ascorbic acid, followed by digestion and Bio-Gel P-2 chromatography, showed that the incorporated radioactivity co-eluted with the A(330)-absorbing peaks, and that most of the fluorescent bands were labeled after TLC. Peaks 2 and 3 from the P-2 were further fractionated by preparative Prodigy C-18 reversed-phase high-performance liquid chromatography. Two major A(330)-absorbing peaks were seen in peak 2 isolated from human cataract lenses and 5 peaks in fraction 3, all of which eluted at the same retention times as those from ascorbic acid glycated calf lens proteins. HPLC fractionation of P-2 peaks 4, 5 and 6 showed many A(330)-absorbing peaks from the cataract WISS, only some of which were identical to the asorbylated proteins. The major fluorophores, however, were present in both preparations. These data provide new evidence to support the hypothesis that the yellow chromophores in brunescent lenses represent advanced glycation endproducts (AGEs) probably due to ascorbic acid glycation in vivo.  相似文献   

20.
不同来源的活性羰基化合物(主要是非酶糖基化和脂质过氧化中间产物)能和多种蛋白发生交联反应,导致其结构的改变及功能的丧失.利用小牛血清白蛋白/丙二醛(BSA/MDA)这一蛋白羰基应激模式,检测不同浓度的MDA对BSA吸光和荧光的影响.同时,通过向BSA/MDA反应体系加入不同浓度的维生素B1(VB1),检测VB1对蛋白羰基修饰的抑制作用.实验结果表明,蛋白的羰基修饰生成了老年色素类荧光物质(APFs),同时使蛋白的羰基含量增加;VB1在一定程度上抑制了蛋白羰基含量的增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号