首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type VI secretion systems (T6SSs) are widespread, tightly regulated, protein delivery apparatuses used by Gram-negative bacteria to outcompete their neighbours. The pathogen, Vibrio parahaemolyticus, encodes two T6SSs. These T6SSs are differentially regulated by external conditions. T6SS1, an antibacterial system predominantly found in pathogenic isolates, requires warm marine-like conditions and surface sensing for activation. The regulatory network that governs this activation is not well understood. In this work, we devised a screening methodology that allows us to easily monitor the outcome of bacterial competitions and thus to identify mutants that are defective in T6SS1-mediated bacterial killing. The methodology, termed Ba cterial Co mpetition F luorescence (BaCoF), relies on detection of a fluorescent signal as an indicator of the survival and growth of a T6SS-sensitive, GFP-expressing prey that has been co-cultured with mutants derived from a T6SS+ attacker of interest. Using BaCoF, we screened a random transposon insertion mutant library and identified genes required for V. parahaemolyticus T6SS1 activation, among them TfoY and Tmk. We used epistasis experiments to determine the relationships between the newly identified components and other regulators that were previously described. Thus, we present here a detailed biological understanding of the T6SS1 regulatory network.  相似文献   

2.
3.
Aims: Two well‐characterized Vibrio parahaemolyticus pathogenicity factors – thermostable direct haemolysin (TDH) and TDHrelated haemolysin – are produced by strains containing the tdh and trh genes, respectively. Most strains of V. parahaemolyticus contain two nonredundant type III secretion systems (T3SS), T3SS1 and T3SS2, both of which contribute to pathogenicity. Furthermore, a recent study has revealed two distinct lineages of the V. parahaemolyticus T3SS2: T3SS2α and T3SS2β. The aim of this study was to determine the incidence of these pathogenicity factors in environmental isolates of V. parahaemolyticus. Methods and Results: We collected 130 V. parahaemolyticus isolates (TCBS agar) containing tdh and/or trh (determined by colony hybridization) from sediment, oyster and water in the northern Gulf of Mexico and screened them and 12 clinical isolates (PCR and agarose gel electrophoresis) for pathogenicity factors tdh, trh, T3SS1, T3SS2α and T3SS2β. The majority of potential pathogens were detected in the sediment, including all tdh?/trh+ isolates. T3SS2α components were detected in all tdh+/trh ? isolates and zero of 109 trh+ isolates. One T3SS2α gene, vopB2, was found in all tdh+/trh? clinical strains but not in any of the 130 environmental strains. Fluorescence in situ hybridization adapted for individual gene recognition (RING‐FISH) was used to confirm the presence/absence of vopB2. T3SS2β was found in all tdh?/trh+ isolates and in no tdh+/trh? isolates. Conclusions: The combination of haemolysins found in each isolate consistently corresponded to the presence and type of T3SS detected. The vopB2 gene may represent a novel marker for identifying increased virulence among strains. Significance and Impact of the Study: This is the first study to confirm the presence of T3SS2β genes in V. parahaemolyticus strains isolated from the Gulf of Mexico and one of the few that examines the distribution and co‐existence of tdh, trh, T3SS1, T3SS2α and T3SS2β in a large collection of environmental strains.  相似文献   

4.
Type VI secretion systems (T6SSs) are transenvelope complexes specialized in the transport of proteins or domains directly into target cells. These systems are versatile as they can target either eukaryotic host cells and therefore modulate the bacteria-host interaction and pathogenesis or bacterial cells and therefore facilitate access to a specific niche. These molecular machines comprise at least 13 proteins. Although recent years have witnessed advances in the role and function of these secretion systems, little is known about how these complexes assemble in the cell envelope. Interestingly, the current information converges to the idea that T6SSs are composed of two subassemblies, one resembling the contractile bacteriophage tail, whereas the other subunits are embedded in the inner and outer membranes and anchor the bacteriophage-like structure to the cell envelope. In this review, we summarize recent structural information on individual T6SS components emphasizing the fact that T6SSs are composite systems, adapting subunits from various origins.  相似文献   

5.
【背景】肽聚糖(Peptidoglycan,PG)是细菌细胞壁的重要组成部分,而霍乱弧菌Ⅵ型分泌系统(Type Ⅵ Secretion System,T6SS)可以分泌具有肽聚糖水解酶活性的效应蛋白到受体细菌中杀死细胞,这类水解酶的作用机制尚未研究清楚。【目的】通过对细菌细胞壁的PG成分进行研究,建立细胞壁PG成分分析方法,并对霍乱弧菌T6SS分泌的2个破坏细胞壁的效应蛋白TseH和VgrG3的作用机制进行解析。【方法】使用显微镜观察TseH和VgrG3异位表达对宿主细菌生长的影响;纯化大肠杆菌细胞壁,使用透射电子显微镜(Transmission Electron Microscope,TEM)观察提纯的细胞壁形态;使用纯化的TseH和VgrG3分解消化PG,利用超高效液相色谱-飞行时间质谱(Ultra-Performance LiquidChromatography-Time-of-FlightMassSpectrometry,UPLC-TOFMS)分析鉴定消化后的产物成分;通过分析结果推导结构。【结果】通过透射电子显微镜观察,发现提纯的PG呈现半透明的薄膜泡状;通过UPLC-TOFMS的分析以及逆向推导,得到了提纯的PG被VgrG3水解酶降解之后的3种主要产物,分别是二糖二肽(Disaccharide,Di)、二糖三肽(Disaccharide Tripeptide,Tri)和二糖四肽(Disaccharide Tetrapeptide,Tetra)。【结论】建立了提纯PG和UPLC-TOFMS分析PG成分的方法,揭示了效应蛋白VgrG3而非TseH可以降解PG多糖链N-乙酰葡糖胺和N-乙酰胞壁酸之间的β(1-4)糖苷键的功能。由于攻击细胞壁的效应蛋白在革兰氏阴性细菌中广泛存在,本研究不仅为鉴定这类重要效应蛋白的功能提供了有效的方法,而且对研究靶向细胞壁的新型抗生素也有重要的指导作用。  相似文献   

6.
Vibrio parahaemolyticus, a Gram-negative marine bacterial pathogen, is emerging as a major cause of food-borne illnesses worldwide due to the consumption of raw seafood leading to diseases including gastroenteritis, wound infection, and septicemia. The bacteria utilize toxins and type III secretion system (T3SS) to trigger virulence. T3SS is a multi-subunit needle-like apparatus used to deliver bacterial proteins, termed effectors, into the host cytoplasm which then target various eukaryotic signaling pathways. V. parahaemolyticus carries two T3SSs in each of its two chromosomes, named T3SS1 and T3SS2, both of which play crucial yet distinct roles during infection: T3SS1 causes cytotoxicity whereas T3SS2 is mainly associated with enterotoxicity. Each T3SS secretes a unique set of effectors that contribute to virulence by acting on different host targets and serving different functions. Emerging studies on T3SS2 of V. parahaemolyticus, reveal its regulation, translocation, discovery, characterization of its effectors, and development of animal models to understand the enterotoxicity. This review on recent findings for T3SS2 of V. parahaemolyticus highlights a novel mechanism of invasion that appears to be conserved by other marine bacteria.  相似文献   

7.
8.
Type VI secretion is critical for Vibrio cholerae to successfully combat phagocytic eukaryotes and to survive in the presence of competing bacterial species. V. cholerae type VI secretion system genes are encoded in one large and two small clusters. In V. cholerae, type VI secretion is controlled by quorum sensing, the cell–cell communication process that enables bacteria to orchestrate group behaviours. The quorum‐sensing response regulator LuxO represses type VI secretion genes at low cell density and the quorum‐sensing regulator HapR activates type VI secretion genes at high cell density. We demonstrate that the quorum regulatory small RNAs (Qrr sRNAs) that function between LuxO and HapR in the quorum‐sensing cascade are required for these regulatory effects. The Qrr sRNAs control type VI secretion via two mechanisms: they repress expression of the large type VI secretion system cluster through base pairing and they repress HapR, the activator of the two small type VI secretion clusters. This regulatory arrangement ensures that the large cluster encoding many components of the secretory machine is expressed prior to the two small clusters that encode the secreted effectors. Qrr sRNA‐dependent regulation of the type VI secretion system is conserved in pandemic and non‐pandemic V. cholerae strains.  相似文献   

9.
We employed a heterologous secretion assay to identify proteins potentially secreted by type III secretion systems (T3SSs) in Vibrio parahaemolyticus. N-terminal sequences from 32 proteins within T3SS genomic islands and seven proteins from elsewhere in the chromosome included proteins that were recognized for export by the Yersinia enterocolitica flagellar T3SS.  相似文献   

10.
11.
Light microscopy and a radioassay detected no significant difference in adherence of Kanagawa-positive and Kanagawa-negative strains of Vibrio parahaemolyticus to human epithelial cell lines.  相似文献   

12.
13.
Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.  相似文献   

14.
The type VI secretion system (T6SS) is a proteinaceous weapon used by many Gram-negative bacteria to deliver toxins into adjacent target cells. Vibrio cholerae, the bacterium responsible for the fatal water-borne cholera disease, uses the T6SS to evade phagocytic eukaryotes, cause intestinal inflammation, and compete against other bacteria with toxins that disrupt lipid membranes, cell walls and actin cytoskeletons. The control of T6SS genes varies among V. cholerae strains and typically includes inputs from external signals and cues, such as quorum sensing and chitin availability. In the following review, we highlight the repertoire of toxic T6SS effectors and the diverse genetic regulation networks among different isolates of V. cholerae. Finally, we discuss the roles played by the T6SS of V. cholerae in both natural environments and hosts.  相似文献   

15.
Vibrio parahaemolyticus causes human gastroenteritis. Genomic sequencing of this organism has revealed that it has two sets of type III secretion systems, T3SS1 and T3SS2, both of which are important for its pathogenicity. However, the mechanism of protein secretion via T3SSs is unknown. A characteristic of many effectors is that they require specific chaperones for efficient delivery via T3SSs; however, no chaperone has been experimentally identified in the T3SSs of V. parahaemolyticus . In this study, we identified candidate T3SS1-associated chaperones from genomic sequence data and examined their roles in effector secretion/translocation and binding to their cognate substrates. From these experiments, we concluded that there is a T3S-associated chaperone, VecA, for a cytotoxic T3SS1-dependent effector, VepA. Further analysis using pulldown and secretion assays characterized the chaperone-binding domain encompassing the first 30–100 amino acids and an amino terminal secretion signal encompassing the first 5–20 amino acids on VepA. These findings will provide a strategy to clarify how the T3SS1 of V. parahaemolyticus secretes its specific effectors.  相似文献   

16.
Studies of the cell envelope of Vibrio parahaemolyticus   总被引:4,自引:0,他引:4  
  相似文献   

17.
18.
目的了解副溶血性弧菌食物中毒和临床腹泻株Ⅲ型分泌系统的分布以及耐药特征。方法对食物中毒和临床腹泻分离到的共21株副溶血性弧菌进行毒力基因tdh、trh、T3SS1、T3SS2α、T3SS2β和toxR检测,并用VITEK 2 compact全自动微生物鉴定系统进行了耐药性分析。结果 21株菌株中tdh+/trh-占90.48%(19/21),tdh-/trh+和tdh-/trh-分别占4.76%、4.76%,未检测到tdh+/trh+菌株。T3SS1广泛存在于所有菌株中。T3SS2α存在于tdh+/trh-菌株,T3SS2β存在于tdh-/trh+菌株。1株食物中毒菌株毒力基因携带情况为tdh-/trh-/T3SS2α-/T3SS2β-。21株副溶血性弧菌对阿莫西林、头孢吡肟、抗菌素B、庆大霉素、环丙沙星和复方新诺明敏感,对氨苄西林完全耐药。结论食物中毒和临床腹泻分离到的菌株大多携带tdh基因,T3SS2α与tdh相关,而T3SS2β则存在于trh+菌株。未携带tdh和trh基因的食物中毒分离株表明副溶血性弧菌不仅仅依赖TDH和TRH发挥毒力作用,其致病机制具有多样性和复杂性。  相似文献   

19.
Aim: Lactobacillus plantarum AS1 was incubated with HT‐29 adenocarcinoma cell line to assess its adhesion potency and examined for its inhibitory effect on the cell attachment by an enterovirulent bacterium Vibrio parahaemolyticus. Methods and Results: Lactobacillus plantarum AS1 attached efficiently to HT‐29 cells as revealed by scanning electron microscopy and bacterial adhesion assay. Lactobacillus plantarum AS1 significantly reduced V. parahaemolyticus attached to HT‐29 cells by competition, exclusion and displacement mode. Lactobacillus plantarum AS1 seems to adhere to human intestinal cells via mechanisms that involve different combinations of carbohydrate and protein factors on the bacteria and eukaryotic cell surface. Conclusion: Strain Lact. plantarum AS1 inhibits the cell attachment of a pathogen V. parahaemolyticus by steric hindrance mechanism. Also, antibacterial factors such as bacteriocins, lactic acid and exopolysaccharides could be involved. Significance and Impact of the Study: The ability to inhibit the adhesion of V. parahaemolyticus to intestinal cell line warrants further investigation to explore the use of probiotic strain Lact. plantarum AS1 in the management of gastroenteritis caused by V. parahaemolyticus.  相似文献   

20.
The human pathogen Pseudomonas aeruginosa harbors three paralogous zinc proteases annotated as AmpD, AmpDh2, and AmpDh3, which turn over the cell wall and cell wall-derived muropeptides. AmpD is cytoplasmic and plays a role in the recycling of cell wall muropeptides, with a link to antibiotic resistance. AmpDh2 is a periplasmic soluble enzyme with the former anchored to the inner leaflet of the outer membrane. We document, herein, that the type VI secretion system locus II (H2-T6SS) of P. aeruginosa delivers AmpDh3 (but not AmpD or AmpDh2) to the periplasm of a prey bacterium upon contact. AmpDh3 hydrolyzes the cell wall peptidoglycan of the prey bacterium, which leads to its killing, thereby providing a growth advantage for P. aeruginosa in bacterial competition. We also document that the periplasmic protein PA0808, heretofore of unknown function, affords self-protection from lysis by AmpDh3. Cognates of the AmpDh3-PA0808 pair are widely distributed across Gram-negative bacteria. Taken together, these findings underscore the importance of their function as an evolutionary advantage and that of the H2-T6SS as the means for the manifestation of the effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号