首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] [UHMW-P(3HB)] synthesized by genetically engineered Escherichia coli is an environmentally friendly bioplastic material which can be processed into strong films or fibers. An operon of three genes (organized as phaCAB) encodes the essential proteins for the production of P(3HB) in the native producer, Ralstonia eutropha. The three genes of the phaCAB operon are phaC, which encodes the polyhydroxyalkanoate (PHA) synthase, phaA, which encodes a 3-ketothiolase, and phaB, which encodes an acetoacetyl coenzyme A (acetoacetyl-CoA) reductase. In this study, the effect of gene order of the phaCAB operon (phaABC, phaACB, phaBAC, phaBCA, phaCAB, and phaCBA) on an expression plasmid in genetically engineered E. coli was examined in order to determine the best organization to produce UHMW-P(3HB). The results showed that P(3HB) molecular weights and accumulation levels were both dependent on the order of the pha genes relative to the promoter. The most balanced production result was achieved in the strain harboring the phaBCA expression plasmid. In addition, analysis of expression levels and activity for P(3HB) biosynthesis enzymes and of P(3HB) molecular weight revealed that the concentration of active PHA synthase had a negative correlation with P(3HB) molecular weight and a positive correlation with cellular P(3HB) content. This result suggests that the level of P(3HB) synthase activity is a limiting factor for producing UHMW-P(3HB) and has a significant impact on P(3HB) production.  相似文献   

2.
利用Clostridium acetobutylicum的丁酸激酶基因 (buk) 和磷酸转丁酰基酶基因(ptb),以及Thiocapsa pfennigii的PHA合成酶基因,设计了一条能够合成多种聚羟基烷酸的代谢途径,用构建的质粒转化大肠杆菌,获得了重组大肠杆菌菌株.前期的研究表明,在合适的前体物条件下,该重组大肠杆菌能够合成包括聚羟基丁酸、聚(羟基丁酸-戊酸)等多种生物聚酯[Liu and Steinbüchel, Appl. Environ. Microbiol. 66739-743].利用该重组大肠杆菌,通过生物催化作用合成了3-巯基丙酸的同型共聚酯,同时利用该重组大肠杆菌还获得了含3-巯基丙酸单体的多种异型共聚物.实验首先研究了3-巯基丙酸对大肠杆菌生长的影响,在此基础上优化了培养过程中添加3-巯基丙酸的时机和浓度,结果表明,在实验的条件下,细胞合成聚(3-巯基丙酸)可达6.7%(占细胞干重),合成聚(3-羟基丁酸-3-巯基丙酸)(分子中3-巯基丙酸3-羟基丁酸=31)可达24.3%.实验进一步研究了同时或分别表达以上3个基因的重组大肠杆菌合成聚合物的能力,结果表明只有当3个基因同时表达时才能合成聚合物,说明3个基因对合成过程是必须的,从而表明了合成途径是按照设计的路线进行的.还通过GC/MS、GPC、IR等手段对合成的化合物进行了定性的研究.聚(3-巯基丙酸)或聚(3-羟基丁酸-3-巯基丙酸)等聚酯属于一类新型生物聚合物,它在分子骨架中含有硫酯键,不同于聚羟基烷酸酯的氧酯键,从而具有显著不同的物理、化学、光学等性质和具有重要的潜在应用价值.  相似文献   

3.
Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.  相似文献   

4.
ABSTRACT: BACKGROUND: Poly(4-hydroxybutyrate) [poly(4HB)] is a strong thermoplastic biomaterial with remarkable mechanical properties, biocompatibility and biodegradability. However, it is generally synthesized when 4-hydroxybutyrate (4HB) structurally related substrates such as gamma-butyrolactone, 4-hydroxybutyrate or 1,4-butanediol (1,4-BD) are provided as precursor which are much more expensive than glucose. At present, high production cost is a big obstacle for large scale production of poly(4HB). RESULTS: Recombinant Escherichia coli strain was constructed to achieve hyperproduction of poly(4-hydroxybutyrate) [poly(4HB)] using glucose as a sole carbon source. An engineering pathway was established in E. coli containing genes encoding succinate degradation of Clostridium kluyveri and PHB synthase of Ralstonia eutropha. Native succinate semialdehyde dehydrogenase genes sad and gabD in E. coli were both inactivated to enhance the carbon flux to poly(4HB) biosynthesis. Four PHA binding proteins (PhaP or phasins) including PhaP1, PhaP2, PhaP3 and PhaP4 from R. eutropha were heterologously expressed in the recombinant E. coli, respectively, leading to different levels of improvement in poly(4HB) production. Among them PhaP1 exhibited the highest capability for enhanced polymer synthesis. The recombinant E. coli produced 5.5 g L-1 cell dry weight containing 35.4% poly(4HB) using glucose as a sole carbon source in a 48 h shake flask growth. In a 6-L fermentor study, 11.5 g L-1 cell dry weight containing 68.2% poly(4HB) was obtained after 52 h of cultivation. This was the highest poly(4HB) yield using glucose as a sole carbon source reported so far. Poly(4HB) was structurally confirmed by gas chromatographic (GC) as well as 1H and 13C NMR studies. CONCLUSIONS: Significant level of poly(4HB) biosynthesis from glucose can be achieved in sad and gabD genes deficient strain of E. coli JM109 harboring an engineering pathway encoding succinate degradation genes and PHB synthase gene, together with expression of four PHA binding proteins PhaP or phasins, respectively. Over 68% poly(4HB) was produced in a fed-batch fermentation process, demonstrating the feasibility for enhanced poly(4HB) production using the recombinant strain for future cost effective commercial development.  相似文献   

5.
The extracellular poly(3-hydroxybutyrate) depolymerase purified from Alcaligenes faecalis T1 has two disulfide bonds, one of which appears to be necessary for the full enzyme activity. This depolymerase hydrolyzed not only hydrophobic poly(3-hydroxybutyrate) but also water-soluble trimer and larger oligomers of D-(−)-3-hydroxybutyrate, regardless of their solubilities in water. Kinetic analyses with oligomers of various sizes indicated that the substrate cleaving site of the enzyme consisted of four subsites with individual affinities for monomer units of the substrate. Analyses of the hydrolytic products of oligomers, which had labeled D-(−)-3-hydroxybutyrate at the hydroxy terminus, showed that the enzyme cleaved only the second ester linkage from the hydroxy terminus of the trimer and tetramer, and acted as an endo-type hydrolase toward the pentamer and higher oligomers. The enzyme appeared to have a hydrophobic site which interacted with poly(3-hydroxybutyrate) and determined the affinity of the enzyme toward the hydrophobic substrate.  相似文献   

6.
Abstract Mutational analysis of the poly(3-hydroxybutyrate) (PHB) depolymerase A of Pseudomonas lemoignei and of the poly(3-hydroxybutyrate) depolymerase of Alcaligenes faecalis revealed that S138 ( P. lemoignei ) and S139 ( A. faecalis ) are essential for activity. Both serines are part of a strictly conserved pentapeptide sequence which is present in all poly(3-hydroxybutyrate) depolymerases analyzed so far (G-L-S-S(A)-G) and which resembles the lipase box of lipases and other serine hydrolases (G-X-S-X-G). Mutation of another conserved serine, namely S195 ( P. lemoignei ) and S196 ( A. faecalis ), resulted in mutant proteinswith almost full activity and proved that S195 and S196 are not essential for activity. The results indicate the structural and functional relationship of poly(3-hydroxybutyrate) depolymerases to the family of serine hydrolases.  相似文献   

7.
In the genome of Burkholderia cepacia strain IPT64, which accumulates a blend of the two homopolyesters poly(3-hydroxybutyrate), poly(3HB), and poly(3-hydroxy-4-pentenoic acid), poly(3H4PE), from sucrose or gluconate as single carbon source, the polyhydroxyalkanoate (PHA) synthase structural gene was disrupted by the insertion of a chloramphenicol-resistant gene cassette (phaC1::Cm). The suicide vector pSUP202 harboring phaC1::Cm was transferred to B. cepacia by conjugation. The inactivated gene was integrated into the chromosome of B. cepacia by homologous recombination. This mutant and also 15 N-methyl-N'-nitrosoguanidine (NMG)-induced mutants still accumulated low amounts of PHAs and expressed low PHA synthase activity. The analysis of the mutant phaC1::Cm showed that it accumulated about 1% of PHA consisting of 68.2 mol% 3HB and 31.8 mol% 3H4PE from gluconate. The wild-type, in contrast, accumulated 49.3% of PHA consisting of 96.5 mol% 3HB and 3. 5 mol% 3H4PE. Our results indicated that the genome of B. cepacia possesses at least two PHA synthase genes, which probably have different substrate specificities.  相似文献   

8.
Bioprocess and Biosystems Engineering - The present study describes production and recovery of poly(3-hydroxybutyrate) P(3HB) from agro-industrial residues. Production was conducted using Ralstonia...  相似文献   

9.
Wautersia eutropha H16 (formerly Ralstonia eutropha) mobilizes intracellularly accumulated poly(3-hydroxybutyrate) (PHB) with intracellular poly(3-hydroxybutyrate) depolymerases. In this study, a novel intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZc) gene was cloned and overexpressed in Escherichia coli. Then PhaZc was purified and characterized. Immunoblot analysis with polyclonal antiserum against PhaZc revealed that most PhaZc is present in the cytosolic fraction and a small amount is present in the poly(3-hydroxybutyrate) inclusion bodies of W. eutropha. PhaZc degraded various 3-hydroxybutyrate oligomers at a high specific activity and artificial amorphous poly(3-hydroxybutyrate) at a lower specific activity. Native PHB granules and semicrystalline PHB were not degraded by PhaZc. A PhaZ deletion mutation enhanced the deposition of PHB in the logarithmic phase in nutrient-rich medium. PhaZc differs from the hydrolases of W. eutropha previously reported and is a novel type of intracellular 3-hydroxybutyrate-oligomer hydrolase, and it participates in the mobilization of PHB along with other hydrolases.  相似文献   

10.
Purification of poly(3-hydroxybutyrate) depolymerase (EC 3.1.1.75) from Paucimonas lemoignei is complicated because the bacterium produces several isoenzymes which are difficult to separate from each other. The phaZ5 gene of P. lemoignei encoding extracellular poly(3-hydroxybutyrate) depolymerase A was functionally expressed from the constitutive P43 promoter of pWB980 in a multiple protease-negative mutant of Bacillus subtilis (strain WB800) and secreted to the culture medium. The depolymerase (apparent M(r), 42 kDa; 1.9 mg purified protein per liter culture) was purified from cell-free culture fluid to homogenity by applying only one chromatography step in comparison to at least two necessary steps if poly(3-hydroxybutyrate) depolymerases are purified from P. lemoignei. The recombinant depolymerase lacked any carbohydrate content in contrast to the glycosylated depolymerase of the wild-type. Glycosylation was not essential for activity but enhanced the thermal stability of the enzyme at high temperature. Overexpression of poly(3-hydroxybutyrate) depolymerase in B. subtilis is more efficient than in Escherichia coli.  相似文献   

11.
 A group of 13 bacterial species from the rRNA superfamily III were tested for their ability to produce the biodegradable polyesters poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3-HB-co-4-HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate [P(3HB-co-3-HV)]. Screening for polyhydroxyalkanoate production was performed on cultures obtained from solid media, rolling cultures and shaking flasks. All 13 species were able to store a poly(3-hydroxybutyrate) homopolymer, 12 species could produce P(3-HB-co-3-HV) copolymers, but only 9 species accumulated P(3-HB-co-4-HB) copolymers. Similarities in polyhydroxyalkanoate-accumulation behaviour between closely related strains were noted. Received: 18 December 1995/Received revision: 3 April 1996/Accepted: 28 May 1996  相似文献   

12.
A newly isolated mutation (Gln508Leu) and a combination of it with previously discovered beneficial mutations in polyhydroxyalkanoate synthase 1 from Pseudomonas sp. 61-3 were found to enhance the production of poly(3-hydroxybutyrate) [P(3HB)] and poly(3HB-co-3-hydroxyalkanoate)s in recombinant Escherichia coli.  相似文献   

13.
The extracellular poly(3-hydroxybutyrate) depolymerase of Alcaligenes faecalis T1, which hydrolyzes both hydrophobic poly(3-hydroxybutyrate) and water-soluble oligomers of D(-)-3-hydroxybutyrate, lost its hydrolyzing activity toward the hydrophobic substrate on mile trypsin treatment, but retained its activity toward water-soluble oligomers. The molecular mass of the trypsin-treated enzyme was 44 kDa, as estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, which was 6 kDa smaller than that of the native enzyme (50 kDa). The trypsin-treated enzyme seemed to be less hydrophobic than the native one, because it was rather weakly adsorbed to a hydrophobic butyl-Toyopearl column compared with the native enzyme, and showed no ability to bind to poly(3-hydroxybutyrate), to which the native enzyme tightly bound. These results suggest that, in addition to a catalytic site, the enzyme has a hydrophobic site, which is not essential for the hydrolysis of water-soluble oligomers, but is necessary for the hydrolysis of hydrophobic substrates, and this hydrophobic site is removed from the enzyme by the action of trypsin.  相似文献   

14.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis.  相似文献   

15.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis.  相似文献   

16.
Abstract Several alcohols were examined as substrates for the polyhydroxyalkanoate synthesis by Paracoccus denitrificans. The bacterium synthesized a homopolyester of poly(3-hydroxybutyrate) from ethanol. When n -pentanol was used as growth substrate, homopolyester poly(3-hydroxyvalerate) was synthesized, whereas copolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulated during bacterial growth on n -propanol. When alcohols were automatically fed as growth substrates, ethanol, n -propanol, and n -pentanol gave higher polyester content. Although poly(3-hydroxybutyrate) was synthesized from methanol or n -butanol, its content was very low. Under nitrogen-deficient conditions, polyester;content in cells increased, especially with ethanol, n -propanol, and n -pentanol. Using a mixture of two alcohols P. denitrificans could synthesize polyesters with varying relative ratios of 3-hydroxybutyrate to 3-hydroxyvalerate.  相似文献   

17.
A rapid quantitative measurement of accumulated polyhydroxyalkanoate (PHA) is essential for rapid monitoring of PHA production by microorganisms. In the present study, a 96-well microplate was used as a high throughput means to measure the fluorescence intensity of the Nile red stained cells containing PHA. The linear correlation obtained between intracellular PHA concentration and the fluorescence intensity represents the potential of the Nile red method employment to determine PHA concentration. The optimal ranges of excitation and emission wavelengths were determined using bacterial cells containing different types of PHAs, of different co-monomers and compositions. Interestingly, in spite of different co-monomers compositions in each PHA, all tested PHAs fluoresced maximally at excitation wavelength between 520 and 550 nm, and emission wavelength between 590 and 630 nm. The developed staining method also had successfully demonstrated a good correlation between the amount of accumulated PHA based on the fluorescence intensity measurements and that from chromatographic analysis to evaluate poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)], using the same calibration curve, despite of different co-monomers that the PHA consist. Strongly supported by these experimental results, it can therefore be concluded that the developed staining method can be efficiently applied for rapid monitoring of PHA production.  相似文献   

18.
Metabolically engineered Escherichia coli strains were constructed to effectively produce novel glycolate-containing biopolymers from glucose. First, the glyoxylate bypass pathway and glyoxylate reductase were engineered such as to generate glycolate. Second, glycolate and lactate were activated by the Megasphaera elsdenii propionyl-CoA transferase to synthesize glycolyl-CoA and lactyl-CoA, respectively. Third, β-ketothiolase and acetoacetyl-CoA reductase from Ralstonia eutropha were introduced to synthesize 3-hydroxybutyryl-CoA from acetyl-CoA. At last, the Ser325Thr/Gln481Lys mutant of polyhydroxyalkanoate (PHA) synthase from Pseudomonas sp. 61–3 was over-expressed to polymerize glycolyl-CoA, lactyl-CoA and 3-hydroxybutyryl-CoA to produce poly(glycolate-co-lactate-co-3-hydroxybutyrate). The recombinant E. coli was able to accumulate the novel terpolymer with a titer of 3.90 g/l in shake flask cultures. The structure of the resulting polymer was chemically characterized by proton NMR analysis. Assessment of thermal and mechanical properties demonstrated that the produced terpolymer possessed decreased crystallinity and improved toughness, in comparison to poly(3-hydroxybutyrate) homopolymer. This is the first study reporting efficient microbial production of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose.  相似文献   

19.
20.
Journal of Industrial Microbiology & Biotechnology - Azotobacter vinelandii OP is a bacterium that produces poly(3-hydroxybutyrate) (PHB). PHB production in a stirred bioreactor, at different...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号