首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In many phylogenetic problems, assuming that species have evolved from a common ancestor by a simple branching process is unrealistic. Reticulate phylogenetic models, however, have been largely neglected because the concept of reticulate evolution have not been supported by using appropriate analytical tools and software. The reticulate model can adequately describe such complicated mechanisms as hybridization between species or lateral gene transfer in bacteria. In this paper, we describe a new algorithm for inferring reticulate phylogenies from evolutionary distances among species. The algorithm is capable of detecting contradictory signals encompassed in a phylogenetic tree and identifying possible reticulate events that may have occurred during evolution. The algorithm produces a reticulate phylogeny by gradually improving upon the initial solution provided by a phylogenetic tree model. The new algorithm is compared to the popular SplitsGraph method in a reanalysis of the evolution of photosynthetic organisms. A computer program to construct and visualize reticulate phylogenies, called T-Rex (Tree and Reticulogram Reconstruction), is available to researchers at the following URL: www.fas.umontreal.ca/biol/casgrain/en/labo/t-rex.  相似文献   

2.
Phylogenetic tree reconstruction frequently assumes the homogeneity of the substitution process over the whole tree. To test this assumption statistically, we propose a test based on the sample covariance matrix of the set of substitution rate matrices estimated from pairwise sequence comparison. The sample covariance matrix is condensed into a one-dimensional test statistic Delta = sum ln(1 + delta(i)), where delta(i) are the eigenvalues of the sample covariance matrix. The test does not assume a specific mutational model. It analyses the variation in the estimated rate matrices. The distribution of this test statistic is determined by simulations based on the phylogeny estimated from the data. We study the power of the test under various scenarios and apply the test to X chromosome and mtDNA primate sequence data. Finally, we demonstrate how to include rate variation in the test.  相似文献   

3.
The properties of random gene tree topologies have recently been studied under a coalescent model that treats a species tree as a fixed parameter. Here we develop the analogous theory for random ranked gene tree topologies, in which both the topology and the sequence of coalescences for a random gene tree are considered. We derive the probability distribution of ranked gene tree topologies conditional on a fixed species tree. We then show that similar to the unranked case, ranked gene trees that do not match either the ranking or the topology of the species tree can have greater probability than the matching ranked gene tree.  相似文献   

4.
Sayyari  Erfan  Mirarab  Siavash 《BMC genomics》2016,17(10):783-113

Background

Inferring species trees from gene trees using the coalescent-based summary methods has been the subject of much attention, yet new scalable and accurate methods are needed.

Results

We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with running times ranging between quadratic to quartic in the number of leaves.

Conclusions

We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and reduced running times.
  相似文献   

5.
6.
Horizontal gene transfer (HGT) is a common event in prokaryotic evolution. Therefore, it is very important to consider HGT in the study of molecular evolution of prokaryotes. This is true also for conducting computer simulations of their molecular phylogeny because HGT is known to be a serious disturbing factor for estimating their correct phylogeny. To the best of our knowledge, no existing computer program has generated a phylogenetic tree with HGT from an original phylogenetic tree. We developed a program called HGT-Gen that generates a phylogenetic tree with HGT on the basis of an original phylogenetic tree of a protein or gene. HGT-Gen converts an operational taxonomic unit or a clade from one place to another in a given phylogenetic tree. We have also devised an algorithm to compute the average length between any pair of branches in the tree. It defines and computes the relative evolutionary time to normalize evolutionary time for each lineage. The algorithm can generate an HGT between a pair of donor and acceptor lineages at the same evolutionary time. HGT-Gen is used with a sequence-generating program to evaluate the influence of HGT on the molecular phylogeny of prokaryotes in a computer simulation study.

Availability

The database is available for free at http://www.grl.shizuoka.ac.jp/˜thoriike/HGT-Gen.html  相似文献   

7.
For a model of molecular evolution to be useful for phylogenetic inference, the topology of evolutionary trees must be identifiable. That is, from a joint distribution the model predicts, it must be possible to recover the tree parameter. We establish tree identifiability for a number of phylogenetic models, including a covarion model and a variety of mixture models with a limited number of classes. The proof is based on the introduction of a more general model, allowing more states at internal nodes of the tree than at leaves, and the study of the algebraic variety formed by the joint distributions to which it gives rise. Tree identifiability is first established for this general model through the use of certain phylogenetic invariants.  相似文献   

8.

Background  

We compared two methods of rooting a phylogenetic tree: the stationary and the nonstationary substitution processes. These methods do not require an outgroup.  相似文献   

9.
ABSTRACT: BACKGROUND: The ancestries of genes form gene trees which do not necessarily have the same topology as the species tree due to incomplete lineage sorting. Available algorithms determining the probability of a gene tree given a species tree require exponential computational runtime. RESULTS: In this paper, we provide a polynomial time algorithm to calculate the probability of a ranked gene tree topology for a given species tree, where a ranked tree topology is a tree topology with the internal vertices being ordered. The probability of a gene tree topology can thus be calculated in polynomial time if the number of orderings of the internal vertices is a polynomial number. However, the complexity of calculating the probability of a gene tree topology with an exponential number of rankings for a given species tree remains unknown. CONCLUSIONS: Polynomial algorithms for calculating ranked gene tree probabilities may become useful in developing methodology to infer species trees based on a collection of gene trees, leading to a more accurate reconstruction of ancestral species relationships.  相似文献   

10.
Long et al. (BMC Bioinformatics 2014, 15(1):278) describe a “discrepancy” in using UniFrac to assess statistical significance of community differences. Specifically, they find that weighted UniFrac results differ between input trees where (a) replicate sequences each have their own tip, or (b) all replicates are assigned to one tip with an associated count. We argue that these are two distinct cases that differ in the probability distribution on which the statistical test is based, because of the differences in tree topology. Further study is needed to understand which randomization procedure best detects different aspects of community dissimilarities.  相似文献   

11.
DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. Availability: DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree  相似文献   

12.
SUMMARY: We introduce a new phylogenetic comparison method that measures overall differences in the relative branch length and topology of two phylogenetic trees. To do this, the algorithm first scales one of the trees to have a global divergence as similar as possible to the other tree. Then, the branch length distance, which takes differences in topology and branch lengths into account, is applied to the two trees. We thus obtain the minimum branch length distance or K tree score. Two trees with very different relative branch lengths get a high K score whereas two trees that follow a similar among-lineage rate variation get a low score, regardless of the overall rates in both trees. There are several applications of the K tree score, two of which are explained here in more detail. First, this score allows the evaluation of the performance of phylogenetic algorithms, not only with respect to their topological accuracy, but also with respect to the reproduction of a given branch length variation. In a second example, we show how the K score allows the selection of orthologous genes by choosing those that better follow the overall shape of a given reference tree. AVAILABILITY: http://molevol.ibmb.csic.es/Ktreedist.html  相似文献   

13.
Recombinations are known to disrupt bifurcating tree structure of gene genealogies. Although recently occurred recombinations are easily detectable by using conventional methods, recombinations may have occurred at any time. We devised a new method for detecting ancient recombinations through phylogenetic network analysis, and detected five ancient recombinations in gibbon ABO blood group genes [Kitano et al., 2009. Mol. Phylogenet. Evol., 51, 465–471]. We present applications of this method, now named as “PNarec”, to various virus sequences as well as HLA genes.  相似文献   

14.
Phylogenetic trees can be rooted by a number of criteria. Here, we introduce a Bayesian method for inferring the root of a phylogenetic tree by using one of several criteria: the outgroup, molecular clock, and nonreversible model of DNA substitution. We perform simulation analyses to examine the relative ability of these three criteria to correctly identify the root of the tree. The outgroup and molecular clock criteria were best able to identify the root of the tree, whereas the nonreversible model was able to identify the root only when the substitution process was highly nonreversible. We also examined the performance of the criteria for a tree of four species for which the topology and root position are well supported. Results of the analyses of these data are consistent with the simulation results.  相似文献   

15.
Functional evolution is often driven by positive natural selection. Although it is thought to be rare in evolution at the molecular level, its effects may be observed as the accelerated evolutionary rates. Therefore one of the effective ways to identify functional evolution is to identify accelerated evolution. Many methods have been developed to test the statistical significance of the accelerated evolutionary rate by comparison with the appropriate reference rate. The rates of synonymous substitution are one of the most useful and popular references, especially for large-scale analyses. On the other hand, these rates are applicable only to a limited evolutionary time period because they saturate quickly--i.e., multiple substitutions happen frequently because of the lower functional constraint. The relative rate test is an alternative method. This technique has an advantage in terms of the saturation effect but is not sufficiently powerful when the evolutionary rate differs considerably among phylogenetic lineages. For the aim to provide a universal reference tree, we propose a method to construct a standardized tree which serves as the reference for accelerated evolutionary rate. The method is based upon multiple molecular phylogenies of single genes with the aim of providing higher reliability. The tree has averaged and normalized branch lengths with standard deviations for statistical neutrality limits. The standard deviation also suggests the reliability level of the branch order. The resulting tree serves as a reference tree for the reliability level of the branch order and the test of evolutionary rate acceleration even when some of the species lineages show an accelerated evolutionary rate for most of their genes due to bottlenecking and other effects.  相似文献   

16.
Ribulose 1,5‐bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO, or Rubisco) catalyzes a key reaction by which inorganic carbon is converted into organic carbon in the metabolism of many aerobic and anaerobic organisms. Across the broader Rubisco protein family, homologs exhibit diverse biochemical characteristics and metabolic functions, but the evolutionary origins of this diversity are unclear. Evidence of the timing of Rubisco family emergence and diversification of its different forms has been obscured by a meager paleontological record of early Earth biota, their subcellular physiology and metabolic components. Here, we use computational models to reconstruct a Rubisco family phylogenetic tree, ancestral amino acid sequences at branching points on the tree, and protein structures for several key ancestors. Analysis of historic substitutions with respect to their structural locations shows that there were distinct periods of amino acid substitution enrichment above background levels near and within its oxygen‐sensitive active site and subunit interfaces over the divergence between Form III (associated with anoxia) and Form I (associated with oxia) groups in its evolutionary history. One possible interpretation is that these periods of substitutional enrichment are coincident with oxidative stress exerted by the rise of oxygenic photosynthesis in the Precambrian era. Our interpretation implies that the periods of Rubisco substitutional enrichment inferred near the transition from anaerobic Form III to aerobic Form I ancestral sequences predate the acquisition of Rubisco by fully derived cyanobacterial (i.e., dual photosystem‐bearing, oxygen‐evolving) clades. The partitioning of extant lineages at high clade levels within our Rubisco phylogeny indicates that horizontal transfer of Rubisco is a relatively infrequent event. Therefore, it is possible that the mutational enrichment periods between the Form III and Form I common ancestral sequences correspond to the adaptation of key oxygen‐sensitive components of Rubisco prior to, or coincident with, the Great Oxidation Event.  相似文献   

17.
Phylogenetic mixtures model the inhomogeneous molecular evolution commonly observed in data. The performance of phylogenetic reconstruction methods where the underlying data are generated by a mixture model has stimulated considerable recent debate. Much of the controversy stems from simulations of mixture model data on a given tree topology for which reconstruction algorithms output a tree of a different topology; these findings were held up to show the shortcomings of particular tree reconstruction methods. In so doing, the underlying assumption was that mixture model data on one topology can be distinguished from data evolved on an unmixed tree of another topology given enough data and the "correct" method. Here we show that this assumption can be false. For biologists, our results imply that, for example, the combined data from two genes whose phylogenetic trees differ only in terms of branch lengths can perfectly fit a tree of a different topology.  相似文献   

18.
The shape of evolution: systematic tree topology   总被引:2,自引:0,他引:2  
Three hypotheses that predict probabilities associated with various tree shapes, or topologies, are compared with observed topology frequencies for a large number of 4, 5, 6 and 7-member trees. The united data on these n-member trees demonstrate that both the equiprobable and proportional-to-distinguishable-types hypotheses poorly predict tree topologies, while all observed topology frequencies are similar to predictions of a simple Markovian dichotomous branching hypothesis. Differences in topology frequencies between phenetic and non-phenetic trees are observed, but their statistical significance is uncertain. Relative frequencies of highly asymmetrical topologies are larger, and those of symmetrical topologies are smaller, in phenetic than in non-phenetic trees. The fact that a simple Markovian branching process, which assumes that each species has an equal probability of speciating in each time period, can predict tree topologies offers promise. Refinement of Markovian branching hypotheses to include the possibility of multiple furcations, differential speciation and extinction rates for different groups of organisms as well as for a single group through geological time, hybrid speciation, introgression, and lineage fusion will be necessary to produce realistic models of lineage diversification.  相似文献   

19.
We use a combination of analytic models and computer simulations to gain insight into the dynamics of evolution. Our results suggest that certain interesting phenomena should eventually emerge from the fossil record. For example, there should be a "tortoise and hare effect": those genera with the smallest species death rate are likely to survive much longer than genera with large species birth and death rates. A complete characterization of the behavior of a branch of the phylogenetic tree corresponding to a genus and accurate mathematical representations of the various stages are obtained. We apply our results to address certain controversial issues that have arisen in paleontology such as the importance of punctuated equilibrium and whether unique Cambrian phyla have survived to the present.  相似文献   

20.
Evolutionarily conserved non-coding genomic sequences represent a potentially rich source for the discovery of gene regulatory regions. Since these elements are subject to stabilizing selection they evolve much more slowly than adjacent non-functional DNA. These so-called phylogenetic footprints can be detected by comparison of the sequences surrounding orthologous genes in different species. Therefore the loss of phylogenetic footprints as well as the acquisition of conserved non-coding sequences in some lineages, but not in others, can provide evidence for the evolutionary modification of cis-regulatory elements. We introduce here a statistical model of footprint evolution that allows us to estimate the loss of sequence conservation that can be attributed to gene loss and other structural reasons. This approach to studying the pattern of cis-regulatory element evolution, however, requires the comparison of relatively long sequences from many species. We have therefore developed an efficient software tool for the identification of corresponding footprints in long sequences from multiple species. We apply this novel method to the published sequences of HoxA clusters of shark, human, and the duplicated zebrafish and Takifugu clusters as well as the published HoxB cluster sequences. We find that there is a massive loss of sequence conservation in the intergenic region of the HoxA clusters, consistent with the finding in [Chiu et al., PNAS 99 (2002) 5492]. The loss of conservation after cluster duplication is more extensive than expected from structural reasons. This suggests that binding site turnover and/or adaptive modification may also contribute to the loss of sequence conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号