首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a study to elucidate the environmental parameters that control microbial perchlorate respiration, we investigated the reduction of perchlorate by the dissimilatory perchlorate reducer Dechlorosoma suillum under a diverse set of environmental conditions. Our results demonstrated that perchlorate reduction by D. suillum only occurred under anaerobic conditions in the presence of perchlorate and was dependent on the presence of molybdenum. Perchlorate reduction was dependent on the presence of the enzyme chlorite dismutase, which was induced during metabolism of perchlorate. Anaerobic conditions alone were not enough to induce expression of this enzyme. Dissolved oxygen concentrations less than 2 mg liter(-1) were enough to inhibit perchlorate reduction by D. suillum. Similarly to oxygen, nitrate also regulated chlorite dismutase expression and repressed perchlorate reduction by D. suillum. Perchlorate-grown cultures of D. suillum preferentially reduced nitrate in media with equimolar amounts of perchlorate and nitrate. In contrast, an extended (40 h) lag phase was observed if a similar nitrate-perchlorate medium was inoculated with a nitrate-grown culture. Perchlorate reduction commenced only when nitrate was completely removed in either of these experiments. In contrast to D. suillum, nitrate had no inhibitory effects on perchlorate reduction by the perchlorate reducer Dechloromonas agitata strain CKB. Nitrate was reduced to nitrite concomitant with perchlorate reduction to chloride. These studies demonstrate that microbial respiration of perchlorate is significantly affected by environmental conditions and perchlorate reduction is directly dependent on bioavailable molybdenum and the presence or absence of competing electron acceptors. A microbial treatment strategy can achieve and maintain perchlorate concentrations below the recommended regulatory level, but only in environments in which the variables described above can be controlled.  相似文献   

2.
Two (per)chlorate-reducing bacteria, strains CUZ and NSS, were isolated from marine sediments in Berkeley and San Diego, CA, respectively. Strain CUZ respired both perchlorate and chlorate [collectively designated (per)chlorate], while strain NSS respired only chlorate. Phylogenetic analysis classified both strains as close relatives of the gammaproteobacterium Sedimenticola selenatireducens. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations showed the presence of rod-shaped, motile cells containing one polar flagellum. Optimum growth for strain CUZ was observed at 25 to 30°C, pH 7, and 4% NaCl, while strain NSS grew optimally at 37 to 42°C, pH 7.5 to 8, and 1.5 to 2.5% NaCl. Both strains oxidized hydrogen, sulfide, various organic acids, and aromatics, such as benzoate and phenylacetate, as electron donors coupled to oxygen, nitrate, and (per)chlorate or chlorate as electron acceptors. The draft genome of strain CUZ carried the requisite (per)chlorate reduction island (PRI) for (per)chlorate respiration, while that of strain NSS carried the composite chlorate reduction transposon responsible for chlorate metabolism. The PRI of strain CUZ encoded a perchlorate reductase (Pcr), which reduced both perchlorate and chlorate, while the genome of strain NSS included a gene for a distinct chlorate reductase (Clr) that reduced only chlorate. When both (per)chlorate and nitrate were present, (per)chlorate was preferentially utilized if the inoculum was pregrown on (per)chlorate. Historically, (per)chlorate-reducing bacteria (PRB) and chlorate-reducing bacteria (CRB) have been isolated primarily from freshwater, mesophilic environments. This study describes the isolation and characterization of two highly related marine halophiles, one a PRB and the other a CRB, and thus broadens the known phylogenetic and physiological diversity of these unusual metabolisms.  相似文献   

3.
Perchlorate and chlorate are electron acceptors that during reduction result in the formation of molecular oxygen. The produced oxygen can be used for activation of anaerobic persistent pollutants, like benzene. In this study chlorate was tested as potential electron acceptor to stimulate benzene degradation in anoxic polluted soil column. A chlorate amended benzene polluted soil column was operated over a period of 500 days. Benzene was immediately degraded in the column after start up, and benzene removal recovered completely after omission of chlorate or a too high influent chlorate concentration (22 mM). Mass balance calculations showed that per mole of benzene five mole of chlorate were reduced. At the end of the experiment higher loading rates were applied to measure the maximal benzene degradation rate in this system; a breakthrough of benzene was not observed. The average benzene degradation rate over this period was 31 μmol l−1 h−1 with a maximal of 78 μmol l−1 h−1. The high degradation rate and the necessity of chlorate indicate that oxygen produced during chlorate reduction indeed is used for the activation of benzene. This is the first column study where benzene biodegradation at a high rate coupled with anaerobic chlorate reduction is observed.  相似文献   

4.
The ability of microorganisms to use chlorate (ClO3-) as an electron acceptor for respiration under anaerobic conditions was studied in batch and continuous tests. Complex microbial communities were cultivated anaerobically in defined media containing chlorate, all essential minerals, and acetate as the sole energy and carbon source. It was shown that chlorate was reduced to chloride, while acetate was oxidized to carbon dioxide and water and used as the carbon source for synthesis of new biomass. A biomass yield of 1.9 to 3.8 g of volatile suspended solids per equivalent of available electrons was obtained, showing that anaerobic growth with chlorate as an electron acceptor gives a high energy yield. This indicates that microbial reduction of chlorate to chloride in anaerobic systems is coupled with electron transport phosphorylation.  相似文献   

5.
Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria   总被引:3,自引:0,他引:3  
Environmental contamination with compounds containing oxyanions of chlorine, such as perchlorate or chlorate [(per)chlorate] or chlorine dioxide, has been a constantly growing problem over the last 100 years. Although the fact that microbes reduce these compounds has been recognized for more than 50 years, only six organisms which can obtain energy for growth by this metabolic process have been described. As part of a study to investigate the diversity and ubiquity of microorganisms involved in the microbial reduction of (per)chlorate, we enumerated the (per)chlorate-reducing bacteria (ClRB) in very diverse environments, including pristine and hydrocarbon-contaminated soils, aquatic sediments, paper mill waste sludges, and farm animal waste lagoons. In all of the environments tested, the acetate-oxidizing ClRB represented a significant population, whose size ranged from 2.31 x 10(3) to 2.4 x 10(6) cells per g of sample. In addition, we isolated 13 ClRB from these environments. All of these organisms could grow anaerobically by coupling complete oxidation of acetate to reduction of (per)chlorate. Chloride was the sole end product of this reductive metabolism. All of the isolates could also use oxygen as a sole electron acceptor, and most, but not all, could use nitrate. The alternative electron donors included simple volatile fatty acids, such as propionate, butyrate, or valerate, as well as simple organic acids, such as lactate or pyruvate. Oxidized-minus-reduced difference spectra of washed whole-cell suspensions of the isolates had absorbance maxima close to 425, 525, and 550 nm, which are characteristic of type c cytochromes. In addition, washed cell suspensions of all of the ClRB isolates could dismutate chlorite, an intermediate in the reductive metabolism of (per)chlorate, into chloride and molecular oxygen. Chlorite dismutation was a result of the activity of a single enzyme which in pure form had a specific activity of approximately 1,928 micromol of chlorite per mg of protein per min. Analyses of the 16S ribosomal DNA sequences of the organisms indicated that they all belonged to the alpha, beta, or gamma subclass of the Proteobacteria. Several were closely related to members of previously described genera that are not recognized for the ability to reduce (per)chlorate, such as the genera Pseudomonas and Azospirllum. However, many were not closely related to any previously described organism and represented new genera within the Proteobacteria. The results of this study significantly increase the limited number of microbial isolates that are known to be capable of dissimilatory (per)chlorate reduction and demonstrate the hitherto unrecognized phylogenetic diversity and ubiquity of the microorganisms that exhibit this type of metabolism.  相似文献   

6.
Anaerobic microbial oxidation of Fe(II) was only recently discovered and very little is known about this metabolism. We recently demonstrated that several dissimilatory perchlorate-reducing bacteria could utilize Fe(II) as an electron donor under anaerobic conditions. Here we report on a more in-depth analysis of Fe(II) oxidation by one of these organisms, Dechlorosoma suillum. Similarly to most known nitrate-dependent Fe(II) oxidizers, D. suillum did not grow heterotrophically or lithoautotrophically by anaerobic Fe(II) oxidation. In the absence of a suitable organic carbon source, cells rapidly lysed even though nitrate-dependent Fe(II) oxidation was still occurring. The coupling of Fe(II) oxidation to a particular electron acceptor was dependent on the growth conditions of cells of D. suillum. As such, anaerobically grown cultures of D. suillum did not mediate Fe(II) oxidation with oxygen as the electron acceptor, while conversely, aerobically grown cultures did not mediate Fe(II) oxidation with nitrate as the electron acceptor. Anaerobic washed cell suspensions of D. suillum rapidly produced an orange/brown precipitate which X-ray diffraction analysis identified as amorphous ferric oxyhydroxide or ferrihydrite. This is similar to all other identified nitrate-dependent Fe(II) oxidizers but is in contrast to what is observed for growth cultures of D. suillum, which produced a mixed-valence Fe(II)-Fe(III) precipitate known as green rust. D. suillum rapidly oxidized the Fe(II) content of natural sediments. Although the form of ferrous iron in these sediments is unknown, it is probably a component of an insoluble mineral, as previous studies indicated that soluble Fe(II) is a relatively minor form of the total Fe(II) content of anoxic environments. The results of this study further enhance our knowledge of a poorly understood form of microbial metabolism and indicate that anaerobic Fe(II) oxidation by D. suillum is significantly different from previously described forms of nitrate-dependent microbial Fe(II) oxidation.  相似文献   

7.
8.
Dechloromonas strain RCB has been shown to be capable of anaerobic degradation of benzene coupled to nitrate reduction. As a continuation of these studies, the metabolic versatility and hydrocarbon biodegradative capability of this organism were investigated. The results of these revealed that in addition to nitrate, strain RCB could alternatively degrade benzene both aerobically and anaerobically with perchlorate or chlorate [(per)chlorate] as a suitable electron acceptor. Furthermore, with nitrate as the electron acceptor, strain RCB could also utilize toluene, ethylbenzene, and all three isomers of xylene (ortho-, meta-, and para-) as electron donors. While toluene and ethylbenzene were completely mineralized to CO2, strain RCB did not completely mineralize para-xylene but rather transformed it to some as-yet-unidentified metabolite. Interestingly, with nitrate as the electron acceptor, strain RCB degraded benzene and toluene concurrently when the hydrocarbons were added as a mixture and almost 92 microM total hydrocarbons were oxidized within 15 days. The results of these studies emphasize the unique metabolic versatility of this organism, highlighting its potential applicability to bioremediative technologies.  相似文献   

9.
Pseudomonas sp. PDA is an unusual bacterium due to its ability to respire using chlorate under aerobic conditions. The chlorate reductase produced by PDA was shown to be intrinsically different from the enzyme responsible for chlorate and perchlorate [(per)chlorate] reduction produced by Azospira sp. KJ based on subunit composition and other enzyme properties. The perchlorate reductase from strain KJ appeared to have two subunits (100 and 40 kDa) while the chlorate reductase from PDA had three subunits (60, 48, and 27 kDa). N-terminal amino acid sequencing of the 100 kDa protein from strain KJ showed a 77% similarity with the perchlorate reductase alpha subunit from another perchlorate-respiring bacterium, Dechloromonas agitata, while the N-terminus amino acid sequence of the 60 kDa protein from strain PDA did not show a similarity to previously isolated chlorate or perchlorate reductases.  相似文献   

10.
A bacterium coded as strain HAP-1 was isolated from a municipal anaerobic digestor for its ability to reduce >7000 ppm perchlorate in wastewaters. The organism is capable of the dissimilatory reduction of perchlorate on chlorate to chloride for energy and growth. It is a Gram-negative, non-sporeforming, obligately anaerobic, motile thin rod. Antibiotic resistance, utilization of carbon substrates and utilization of electron acceptors by bacterium HAP-1 were similar toWolinella succinogenes. The organism's 16S rRNA sequence was 0.75% different from that of the type strain ofW. succinogenes. The fatty acid compositions of the two organisms are very similar. The morphological, physiological and 16S rRNA sequence data indicated that bacterium HAP-1 is a strain ofW. succinogenes that can utilize perchlorate or chlorate as a terminal electron acceptor.  相似文献   

11.
Universal immunoprobe for (per)chlorate-reducing bacteria   总被引:1,自引:0,他引:1  
Recent studies in our lab have demonstrated the ubiquity and diversity of microorganisms which couple growth to the reduction of chlorate or perchlorate [(per)chlorate] under anaerobic conditions. We identified two taxonomic groups, the Dechloromonas and the Dechlorosoma groups, which represent the dominant (per)chlorate-reducing bacteria (ClRB) in the environment. As part of these studies we demonstrated that chlorite dismutation is a central step in the reductive pathway of (per)chlorate that is common to all ClRB and which is mediated by the enzyme chlorite dismutase (CD). Initial studies on CD suggested that this enzyme is highly conserved among the ClRB, regardless of their phylogenetic affiliation. As such, this enzyme makes an ideal target for a probe specific for these organisms. Polyclonal antibodies were commercially raised against the purified CD from the ClRB Dechloromonas agitata strain CKB. The obtained antiserum was deproteinated by ammonium sulfate precipitation, and the antigen binding activity was assessed using dot blot analysis of a serial dilution of the antiserum. The titers obtained with purified CD indicated that the antiserum had a high affinity for the CD enzyme, and activity was observed in dilutions as low as 10(-6) of the original antiserum. The antiserum was active against both cell lysates and whole cells of D. agitata, but only if the cells were grown anaerobically with (per)chlorate. No response was obtained with aerobically grown cultures. In addition to D. agitata, dot blot analysis employed with both whole-cell suspensions and cell lysates of several diverse ClRB representing the alpha, beta, and gamma subclasses of Proteobacteria tested positive regardless of phylogenetic affiliation. Interestingly, the dot blot response obtained for each of the ClRB cell lysates was different, suggesting that there may be some differences in the antigenic sites of the CD protein produced in these organisms. In general, no reactions were observed with cells or cell lysates of the organisms closely related to the ClRB which could not grow by (per)chlorate reduction. These studies have resulted in the development of a highly specific and sensitive immunoprobe based on the commonality of the CD enzyme in ClRB which can be used to assess dissimilatory (per)chlorate-reducing populations in environmental samples regardless of their phylogenetic affiliations.  相似文献   

12.
The reduction of (per)chlorate and nitrate in (per)chlorate-reducing bacteria shows similarities and differences. (Per)chlorate reductase and nitrate reductase both belong to the type?II DMSO family of enzymes and have a common bis(molybdopterin guanine dinucleotide)molybdenum cofactor. There are two types of dissimilatory nitrate reductases. With respect to their localization, (per)chlorate reductase is more similar to the dissimilatory periplasmic nitrate reductase. However, the periplasmic, unlike the membrane-bound, respiratory nitrate reductase, is not able to use chlorate. Structurally, (per)chlorate reductase is more similar to respiratory nitrate reductase, since these reductases have analogous subunits encoded by analogous genes. Both periplasmic (per)chlorate reductase and membrane-bound nitrate reductase activities are induced under anoxic conditions in the presence of (per)chlorate and nitrate respectively. During microbial (per)chlorate reduction, molecular oxygen is generated. This is not the case for nitrate reduction, although an atypical reaction in nitrite reduction linked to oxygen formation has been described recently. Microbial oxygen production during reduction of oxyanions may enhance biodegradation of pollutants under anoxic conditions.  相似文献   

13.
As part of a study on the microbiology of chlorate reduction, several new dissimilatory chlorate-reducing bacteria were isolated from a broad diversity of environments. One of these, strain CKB, was selected for a more complete characterization. Strain CKB was enriched and isolated from paper mill waste with acetate as the sole electron donor and chlorate as the sole electron acceptor. Strain CKB is a completely oxidizing, non-fermentative, Gram-negative, facultative anaerobe. Cells of strain CKB are 0.5 x 2 microm and are highly motile, with a single polar flagellum. In addition to acetate, strain CKB can use propionate, butyrate, lactate, succinate, fumarate, malate or yeast extract as electron donors, with chlorate as the sole electron acceptor. Strain CKB can also couple chlorate reduction to the oxidation of ferrous iron, sulphide, or the reduced form of the humic substances analogue 2,6-anthrahydroquinone disulphonate. Fe(II) is oxidized to insoluble amorphous Fe(II) oxide, whereas sulphide is oxidized to elemental sulphur. Growth is not associated with this metabolism, even when small quantities of acetate are added as a potential carbon source. In addition to chlorate, strain CKB can also couple acetate oxidation to the reduction of oxygen or perchlorate. Chlorate is completely reduced to chloride. Strain CKB has an optimum temperature of 35 degrees C, a pH optimum of 7.5 and a salinity optimum of 1% NaCl. Strain CKB can grow in chlorate and perchlorate concentrations of 80 or 20 mM respectively. Under anaerobic conditions, strain CKB can dismutate chlorite into chloride and O2, and is only the second organism shown to be capable of this metabolism. Oxidized minus reduced spectra of whole-cell suspensions of strain CKB showed absorbance maxima at 423, 523 and 552nm, which are indicative of the presence of c-type cytochrome(s). Analysis of the complete sequence of the 16S rDNA indicates that strain CKB is a member of the beta subclass of the Proteobacteria. The phototroph Rhodocyclus tenuis is the closest known relative. When tested, strain CKB could not grow by phototrophy and did not contain bacteriochlorophyll. Phenotypically and phylogenetically, strain CKB differs from all other described bacteria and represents the type strain of a new genus and species.  相似文献   

14.
The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were grown with perchlorate, both responded to nitrate, chlorate, and perchlorate. When A. suillum was grown with perchlorate, the organism responded to chlorate and perchlorate but not nitrate. A gene replacement mutant in the perchlorate reductase subunit (pcrA) of D. aromatica resulted in a loss of the attraction response toward perchlorate but had no impact on the nitrate response. Washed-cell suspension studies revealed that the perchlorate grown cells of D. aromatica reduced both perchlorate and nitrate, while A. suillum cells reduced perchlorate only. Based on these observations, energy taxis was proposed as the underlying mechanism for the responses to (per)chlorate by D. aromatica. To the best of our knowledge, this study represents the first investigation of the response behavior of perchlorate-reducing bacteria to environmental stimuli. It clearly demonstrates attraction toward chlorine oxyanions and the unique ability of these organisms to distinguish structurally analogous compounds, nitrate, chlorate, and perchlorate and respond accordingly.  相似文献   

15.
16.
Dechloromonas strain RCB has been shown to be capable of anaerobic degradation of benzene coupled to nitrate reduction. As a continuation of these studies, the metabolic versatility and hydrocarbon biodegradative capability of this organism were investigated. The results of these revealed that in addition to nitrate, strain RCB could alternatively degrade benzene both aerobically and anaerobically with perchlorate or chlorate [(per)chlorate] as a suitable electron acceptor. Furthermore, with nitrate as the electron acceptor, strain RCB could also utilize toluene, ethylbenzene, and all three isomers of xylene (ortho-, meta-, and para-) as electron donors. While toluene and ethylbenzene were completely mineralized to CO2, strain RCB did not completely mineralize para-xylene but rather transformed it to some as-yet-unidentified metabolite. Interestingly, with nitrate as the electron acceptor, strain RCB degraded benzene and toluene concurrently when the hydrocarbons were added as a mixture and almost 92 μM total hydrocarbons were oxidized within 15 days. The results of these studies emphasize the unique metabolic versatility of this organism, highlighting its potential applicability to bioremediative technologies.  相似文献   

17.
A stable anoxic enrichment culture was obtained that degraded benzene with chlorate as an electron acceptor. The benzene degradation rate was 1.65 mM benzene per day, which is similar to reported aerobic benzene degradation rates but 20-1650 times higher than reported for anaerobic benzene degradation. Denaturing gradient gel electrophoresis of part of the 16S rRNA gene, cloning and sequencing showed that the culture had a stable composition after the seventh transfer. Five bacterial clones were further analyzed. Two clones corresponded to bacteria closely related to Alicycliphilus denitrificans K601. The three other clones corresponded to bacteria closely related to Zoogloea resiniphila PIV-3A2w, Mesorhizobium sp. WG and Stenotrophomonas acidaminiphila. DGGE analysis of cultures grown with different electron donors and acceptors indicated that the bacterium related to Alicycliphilus denitrificans K601 is able to degrade benzene coupled to chlorate reduction. The role of the other bacteria could not be conclusively determined. The bacterium related to Mesorhizobium sp. WG can be enriched with benzene and oxygen, but not with acetate and chlorate, while the bacterium related to Stenotrophomonas acidaminophila grows with acetate and chlorate, but not with benzene and oxygen. As oxygen is produced during chlorate reduction, an aerobic pathway of benzene degradation is most likely.  相似文献   

18.
The recent finding that Archaeoglobus fulgidus is able to couple (per)chlorate reduction to growth expanded this trait to the hyperthermophilic range of life. This sulfate-reducing archaeon is considered to be one of the major contributors to souring in hot oil reservoirs. Therefore, it is important to study its physiology in depth, particularly in view of novel souring mitigation strategies. A. fulgidus does not possess the classical (per)chlorate reduction pathway, as it lacks the key enzyme chlorite dismutase. Rather, the microorganism seems to couple (per)chlorate reduction to sulfur metabolism. Growth experiments show the strict necessity of sulfur compounds to sustain perchlorate reduction. Furthermore, the chemical formation of elemental sulfur was observed during perchlorate reduction, a compound that is biologically reduced again. Additional experiments showed that tetrathionate, but not elemental sulfur and polysulfide, serves as an electron acceptor for growth by A. fulgidus. Taken together these results provide further evidence for the importance of chemical and biological redox reactions involving sulfur compounds during (per)chlorate reduction. In non-reduced media also, nitrate could be reduced by A. fulgidus, though not coupled to growth. This observation and the fact that A. fulgidus had prolonged adaptation phases on sulfate after long-lasting growth on perchlorate are of interest in the development of new souring mitigation strategies using nitrate and/or (per)chlorate.  相似文献   

19.
Experiments were conducted to determine factors that affect sensitivity of Salmonella enterica serovar Typhimurium to sodium chlorate (5 mM). In our first experiment, cultures grown without chlorate grew more rapidly than those with chlorate. An extended lag before logarithmic growth was observed in anaerobic but not aerobic cultures containing chlorate. Chlorate inhibition of growth during aerobic culture began later than that observed in anaerobic cultures but persisted once inhibition was apparent. Conversely, anaerobic cultures appeared to adapt to chlorate after approximately 10 h of incubation, exhibiting rapid compensatory growth. In anaerobic chlorate-containing cultures, 20% of total viable counts were resistant to chlorate by 6 h and had propagated to 100% resistance (>109 CFU mL?1) by 24 h. In the aerobic chlorate-containing cultures, 12.9% of colonies had detectable resistance to chlorate by 6 h, but only 1% retained detectable resistance at 24 h, likely because these cultures had opportunity to respire on oxygen and were thus not enriched via the selective pressure of chlorate. In another study, treatment with shikimic acid (0.34 mM), molybdate (1 mM) or their combination had little effect on aerobic or anaerobic growth of Salmonella in the absence of added chlorate. As observed in our earlier study, chlorate resistance was not detected in any cultures without added chlorate. Chlorate resistant Salmonella were recovered at equivalent numbers regardless of treatment after 8 h of aerobic or anaerobic culture with added chlorate; however, by 24 h incubation chlorate sensitivity was completely restored to aerobic but not anaerobic cultures treated with shikimic acid or molybdate but not their combination. Results indicate that anaerobic adaptation of S. Typhimurium to sodium chlorate during pure culture is likely due to the selective propagation of low numbers of cells exhibiting spontaneous resistance to chlorate and this resistance is not reversible by molybdenum supplementation.  相似文献   

20.
Four bacterial strains were isolated from a cyanophycin granule polypeptide (CGP)-degrading anaerobic consortium, identified by 16S rRNA gene sequencing, and assigned to species of the genera Pseudomonas, Enterococcus, Clostridium, and Paenibacillus. The consortium member responsible for CGP degradation was assigned as Pseudomonas alcaligenes strain DIP1. The growth of and CGP degradation by strain DIP1 under anaerobic conditions were enhanced but not dependent on the presence of nitrate as an electron acceptor. CGP was hydrolyzed to its constituting beta-Asp-Arg dipeptides, which were then completely utilized within 25 and 4 days under anaerobic and aerobic conditions, respectively. The end products of CGP degradation by strain DIP1 were alanine, succinate, and ornithine as determined by high-performance liquid chromatography analysis. The facultative anaerobic Enterococcus casseliflavus strain ELS3 and the strictly anaerobic Clostridium sulfidogenes strain SGB2 were coisolates and utilized the beta-linked isodipeptides from the common pool available to the mixed consortium, while the fourth isolate, Paenibacillus odorifer strain PNF4, did not play a direct role in the biodegradation of CGP. Several syntrophic interactions affecting CGP degradation, such as substrate utilization, the reduction of electron acceptors, and aeration, were elucidated. This study demonstrates the first investigation of CGP degradation under both anaerobic and aerobic conditions by one bacterial strain, with regard to the physiological role of other bacteria in a mixed consortium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号