共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana 总被引:6,自引:0,他引:6
We investigated the fourth subgroup of Arabidopsis aquaporin, small and basic intrinsic proteins (SIPs). When they were expressed in yeast, SIP1;1 and SIP1;2, but not SIP2;1, gave water-channel activity. The transient expression of SIPs linked with green fluorescent protein in Arabidopsis cells and the subcellular fractionation of the tissue homogenate showed their ER localization. The SIP proteins were detected in all of the tissues, except for dry seeds. Histochemical analysis of promoter-beta-glucuronidase fusions revealed the cell-specific expression of SIPs. SIP1;1 and SIP1;2 may function as water channels in the ER, while SIP2;1 might act as an ER channel for other small molecules or ions. 相似文献
3.
Ricard Brossa Marta Pintó-Marijuan Keni Jiang Leonor Alegre Lewis J. Feldman 《Plant signaling & behavior》2013,8(7)
Using Arabidopsis plants Col-0 and vtc2 transformed with a redox sensitive green fluorescent protein, (c-roGFP) and (m-roGFP), we investigated the effects of a progressive water stress and re-watering on the redox status of the cytosol and the mitochondria. Our results establish that water stress affects redox status differently in these two compartments, depending on phenotype and leaf age, furthermore we conclude that ascorbate plays a pivotal role in mediating redox status homeostasis and that Col-0 Arabidopsis subjected to water stress increase the synthesis of ascorbate suggesting that ascorbate may play a role in buffering changes in redox status in the mitochondria and the cytosol, with the presumed buffering capacity of ascorbate being more noticeable in young compared with mature leaves. Re-watering of water-stressed plants was paralleled by a return of both the redox status and ascorbate to the levels of well-watered plants. In contrast to the effects of water stress on ascorbate levels, there were no significant changes in the levels of glutathione, thereby suggesting that the regeneration and increase in ascorbate in water-stressed plants may occur by other processes in addition to the regeneration of ascorbate via the glutathione. Under water stress in vtc2 lines it was observed stronger differences in redox status in relation to leaf age, than due to water stress conditions compared with Col-0 plants. In the vtc2 an increase in DHA was observed in water-stressed plants. Furthermore, this work confirms the accuracy and sensitivity of the roGFP1 biosensor as a reporter for variations in water stress-associated changes in redox potentials. 相似文献
4.
Schenk N Schelbert S Kanwischer M Goldschmidt EE Dörmann P Hörtensteiner S 《FEBS letters》2007,581(28):5517-5525
One important reaction of chlorophyll (chl) breakdown during plant senescence is the removal of the lipophilic phytol moiety by chlorophyllase. AtCLH1 and AtCLH2 were considered to be required for this reaction in Arabidopsis thaliana. Here we present evidence against this assumption. Using green fluorescent protein fusions, neither AtCLH isoform localizes to chloroplasts, the predicted site of chlorophyll breakdown. Furthermore, clh1 and clh2 single and double knockout lines are still able to degrade chlorophyll during senescence. From our data we conclude that AtCLHs are not required for senescence-related chlorophyll breakdown in vivo and propose that genuine chlorophyllase has not yet been molecularly identified. 相似文献
5.
6.
Watanabe N Cherney MM van Belkum MJ Marcus SL Flegel MD Clay MD Deyholos MK Vederas JC James MN 《Journal of molecular biology》2007,371(3):685-702
The essential biosynthetic pathway to l-Lysine in bacteria and plants is an attractive target for the development of new antibiotics or herbicides because it is absent in humans, who must acquire this amino acid in their diet. Plants use a shortcut of a bacterial pathway to l-Lysine in which the pyridoxal-5'-phosphate (PLP)-dependent enzyme ll-diaminopimelate aminotransferase (LL-DAP-AT) transforms l-tetrahydrodipicolinic acid (L-THDP) directly to LL-DAP. In addition, LL-DAP-AT was recently found in Chlamydia sp., suggesting that inhibitors of this enzyme may also be effective against such organisms. In order to understand the mechanism of this enzyme and to assist in the design of inhibitors, the three-dimensional crystal structure of LL-DAP-AT was determined at 1.95 A resolution. The cDNA sequence of LL-DAP-AT from Arabidopsis thaliana (AtDAP-AT) was optimized for expression in bacteria and cloned in Escherichia coli without its leader sequence but with a C-terminal hexahistidine affinity tag to aid protein purification. The structure of AtDAP-AT was determined using the multiple-wavelength anomalous dispersion (MAD) method with a seleno-methionine derivative. AtDAP-AT is active as a homodimer with each subunit having PLP in the active site. It belongs to the family of type I fold PLP-dependent enzymes. Comparison of the active site residues of AtDAP-AT and aspartate aminotransferases revealed that the PLP binding residues in AtDAP-AT are well conserved in both enzymes. However, Glu97* and Asn309* in the active site of AtDAP-AT are not found at similar positions in aspartate aminotransferases, suggesting that specific substrate recognition may require these residues from the other monomer. A malate-bound structure of AtDAP-AT allowed LL-DAP and L-glutamate to be modelled into the active site. These initial three-dimensional structures of LL-DAP-AT provide insight into its substrate specificity and catalytic mechanism. 相似文献
7.
Watanabe N Clay MD van Belkum MJ Cherney MM Vederas JC James MN 《Journal of molecular biology》2008,384(5):1314-1329
LL-Diaminopimelate aminotransferase (LL-DAP-AT), a pyridoxal phosphate (PLP)-dependent enzyme in the lysine biosynthetic pathways of plants and Chlamydia, is a potential target for the development of herbicides or antibiotics. This homodimeric enzyme converts L-tetrahydrodipicolinic acid (THDP) directly to LL-DAP using L-glutamate as the source of the amino group. Earlier, we described the 3D structures of native and malate-bound LL-DAP-AT from Arabidopsis thaliana (AtDAP-AT). Seven additional crystal structures of AtDAP-AT and its variants are reported here as part of an investigation into the mechanism of substrate recognition and catalysis. Two structures are of AtDAP-AT with reduced external aldimine analogues: N-(5'-phosphopyridoxyl)-L-glutamate (PLP-Glu) and N-(5'-phosphopyridoxyl)- LL-Diaminopimelate (PLP-DAP) bound in the active site. Surprisingly, they reveal that both L-glutamate and LL-DAP are recognized in a very similar fashion by the same sets of amino acid residues; both molecules adopt twisted V-shaped conformations. With both substrates, the alpha-carboxylates are bound in a salt bridge with Arg404, whereas the distal carboxylates are recognized via hydrogen bonds to the well-conserved side chains of Tyr37, Tyr125 and Lys129. The distal C(epsilon) amino group of LL-DAP is specifically recognized by several non-covalent interactions with residues from the other subunit (Asn309*, Tyr94*, Gly95*, and Glu97* (Amino acid designators followed by an asterisk (*) indicate that the residues originate in the other subunit of the dimer)) and by three bound water molecules. Two catalytically inactive variants of AtDAP-AT were created via site-directed mutagenesis of the active site lysine (K270N and K270Q). The structures of these variants permitted the observation of the unreduced external aldimines of PLP with L-glutamate and with LL-DAP in the active site, and revealed differences in the torsion angle about the PLP-substrate bond. Lastly, an apo-AtDAP-AT structure missing PLP revealed details of conformational changes induced by PLP binding and substrate entry into the active site. 相似文献
8.
Intermittent exposure during a period of 3 weeks of undamaged Arabidopsis plants to trace amounts of volatiles emitted by freshly damaged Arabidopsis plants resulted in an increase of subsequent artificial-damage-induced production of (Z)-3-hexen-1-yl acetate and (Z)-3-hexen-1-ol in the exposed Arabidopsis plants when compared with Arabidopsis plants exposed to undamaged Arabidopsis plant volatiles (control plants). We previously showed that (Z)-3-hexen-1-yl acetate attracts a parasitic wasp, Cotesia glomerata. Thus, the induced production of this volatile explained our previously reported finding that, when artificially damaged, the exposed plants were more attractive to C. glomerata than control plants. 相似文献
9.
Reticulon-like proteins in Arabidopsis thaliana: structural organization and ER localization 总被引:1,自引:0,他引:1
Reticulons are proteins that have been found predominantly associated with the endoplasmic reticulum in yeast and mammalian cells. While their functions are still poorly understood, recent findings suggest that they participate in the shaping of the tubular endoplamic reticulum (ER). Although reticulon-like proteins have been identified in plants, very little is known about their cellular localization and functions. Here, we characterized the reticulon-like protein family of Arabidopsis thaliana. Three subfamilies can be distinguished on the basis of structural organization and sequence homology. We investigated the subcellular localization of two members of the largest subfamily, i.e. AtRTNLB2 and AtRTNLB4, using fluorescent protein tags. The results demonstrate for the first time that plant reticulon-like proteins are associated with the ER. Both AtRTNLB proteins are located in the tubular ER but AtRTNLB4 is also found in the lamellar ER cisternae, and in ER tubules in close association with the chloroplasts. Similarity in protein structure and subcellular localization between AtRTNLB2 and mammalian reticulons suggests that they could assume similar basic functions inside the cell. 相似文献
10.
The mobilization of sulfur (SUF) system is one of three systems involved in iron-sulfur cluster biosynthesis and maintenance. In eukaryotes the SUF system is specific for the plastid and therefore of symbiotic origin. Analyses in cryptophytes showed a unique genetic compartmentalization of the SUF system, which evolved by at least two different gene transfer events. We analyzed one of the components, SufD, in the cryptophyte Guillardia theta and in Arabidopsis thaliana. We demonstrated that SufD fulfils house keeping functions during embryogenesis and in adult plants in A. thaliana. 相似文献
11.
Chardwiriyapreecha S Shimazu M Morita T Sekito T Akiyama K Takegawa K Kakinuma Y 《FEBS letters》2008,582(15):2225-2230
We have identified the Schizosaccharomyces pombe SPBC3E7.06c gene (fnx2(+)) from a homology search with the fnx1(+) gene involving in G(0) arrest upon nitrogen starvation. Green fluorescent protein-fused Fnx1p and Fnx2p localized exclusively to the vacuolar membrane. Uptake of histidine or isoleucine by S. pombe cells was inhibited by concanamycin A, a specific inhibitor of the vacuolar H(+)-ATPase. Amino acid uptake was also defective in the vacuolar ATPase mutant, suggesting that vacuolar compartmentalization is critical for amino acid uptake by whole cells. In both Deltafnx1 and Deltafnx2 mutant cells, uptake of lysine, isoleucine or asparagine was impaired. These results suggest that fnx1(+) and fnx2(+) are involved in vacuolar amino acid uptake in S. pombe. 相似文献
12.
MDCK cells expressing an inducible duodenal cytochrome b-green fluorescent protein (Dcytb-EGFP) fusion construct were used to investigate the function of Dcytb. The Dcytb-EGFP protein was targeted correctly to the plasma membrane, and cells displayed increased ferric and cupric reductase activities, which were greatly reduced in the presence of doxycycline. The data suggests that Dcytb plays a physiological role in both iron and copper uptake, through divalent metal transporter 1 (DMT1) and copper transporter 1, respectively. In support of this hypothesis, we show that 59Fe uptake was significantly enhanced in Dcytb-EGFP expressing MDCK cells which endogenously express DMT1. 相似文献
13.
We earlier isolated a Chinese hamster ovary cell line ZP121 showing morphologically abnormal, tubular peroxisomes, and apparent dysmorphogenesis of mitochondria. Here, we identified an inactivating point-mutation in dynamin-like protein 1 gene, DLP1, responsible for the phenotype of ZP121. One allele of DLP1 possessed a point missense mutation resulting in G363D in the middle region of 699-amino-acid long DLP1, termed DLP1G363D, while the other allele was normal. DLP1G363D was apparently expressed at a higher level than DLP1. Abnormal morphogenesis of peroxisomes as well as mitochondria was restored when wild-type DLP1 was transfected. The GTPase activity of DLP1G363D was barely detectable, indicating that the G363D mutation severely affected the GTPase activity. Moreover, a higher level of DLP1G363D expression in CHO-K1 cells reproduced the ZP121-type phenotype, hence indicating its dominant-negative activity to the wild-type DLP1, most likely by forming a heteromeric tetramer. The G363D mutation also gave rise to a temperature-sensitive phenotype showing normal morphogenesis of peroxisomes and mitochondria at 40 degrees C. Microtubule organization was most likely involved in the elongation of peroxisomes. Furthermore, ZP121 was lowered in the level of phospholipids, plasmalogens, and phosphatidylethanolamine and was less sensitive to oxidative stresses. Thus, ZP121 is the first dlp1 mutant in mammalian cells. 相似文献
14.
Schähs P Weidinger P Probst OC Svoboda B Stadlmann J Beug H Waerner T Mach L 《Experimental cell research》2008,314(16):3036-3047
Cellular repressor of E1A-stimulated genes (CREG) has been reported to be a secretory glycoprotein implicated in cellular growth and differentiation. We now show that CREG is predominantly localized within intracellular compartments. Intracellular CREG was found to lack an N-terminal peptide present in the secreted form of the protein. In contrast to normal cells, CREG is largely secreted by fibroblasts missing both mannose 6-phosphate receptors. This is not observed in cells lacking only one of them. Mass spectrometric analysis of recombinant CREG revealed that the protein contains phosphorylated oligosaccharides at either of its two N-glycosylation sites. Cellular CREG was found to cosediment with lysosomal markers upon subcellular fractionation by density-gradient centrifugation. In fibroblasts expressing a CREG-GFP fusion construct, the heterologous protein was detected in compartments containing lysosomal proteins. Immunolocalization of endogenous CREG confirmed that intracellular CREG is localized in lysosomes. Proteolytic processing of intracellular CREG involves the action of lysosomal cysteine proteinases. These results establish that CREG is a lysosomal protein that undergoes proteolytic maturation in the course of its biosynthesis, carries the mannose 6-phosphate recognition marker and depends on the interaction with mannose 6-phosphate receptors for efficient delivery to lysosomes. 相似文献
15.
Fan J Yang X Lu J Chen L Xu P 《Biochemical and biophysical research communications》2007,359(2):245-250
Membrane syntaxin plays essential roles in exocytosis in eukaryotic cells. The conservative H(abc) domain in plasma membrane syntaxins implies important roles for syntaxin targeting and function. Our previous study showed H(abc) domain was necessary for the trafficking and cluster distribution of syntaxin 1A on the plasma membrane. Here we identified which of the three domains (H(a), H(b) and H(c)) was essential for Stx1A trafficking and clustering. We found that, in INS-1 cells, the mutant truncated with either H(a), H(b) or H(c) domain could be sorted to the cell surface by a different mechanism compared to that of whole H(abc) truncated mutant. In contrast to wild type Stx1A, none of the mutants showed cluster distribution at the functional sites, suggesting that the physiological localization of Stx1A relies on intact H(abc) domain. Furthermore Munc18-1 is found not to be essential for Stx1A cluster distribution, despite important role in stabilizing membrane delivery of Stx1A. 相似文献
16.
The development of efficient tools is required for the eco-friendly detoxification and effective detection of neurotoxic organophosphates (OPs). Although enzymes have received significant attention as biocatalysts because of their high specific activity, the uneconomic and labor-intensive processes of enzyme production and purification make their broad use in practical applications difficult. Because whole-cell systems offer several advantages compared with free enzymes, including high stability, a reduced purification requirement, and low preparation cost, they have been suggested as promising biocatalysts for the detoxification and detection of OPs. To develop efficient whole-cell biocatalysts with enhanced activity and a broad spectrum of substrate specificity, several factors have been considered, namely the selected strains, the chosen OP-hydrolyzing enzymes, where enzymes are localized in a cell, and which enhancer will assist the expression, function, and folding of the enzyme. In this article, we review the current investigative progress in the development of engineered whole-cell biocatalysts with excellent OP-hydrolyzing activity, a broad spectrum of substrate specificity, and outstanding stability for the detoxification and detection of OPs. 相似文献
17.
The Smith-Lemli-Opitz Syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. SLOS is clinically diagnosed by reduced plasma levels of cholesterol along with elevated levels of 7-dehydrocholesterol (and its positional isomer 8-dehydrocholesterol) and the ratio of their concentrations to that of cholesterol. Since SLOS is associated with neurological deformities and malfunction, exploring the function of neuronal receptors and their interaction with membrane cholesterol under these conditions assumes significance. We have earlier shown the requirement of membrane cholesterol for the ligand binding function of an important neurotransmitter G-protein coupled receptor, the serotonin1A receptor. In the present work, we have generated a cellular model of SLOS using CHO cells stably expressing the human serotonin1A receptor. This was achieved by metabolically inhibiting the biosynthesis of cholesterol, utilizing a specific inhibitor (AY 9944) of the enzyme required in the final step of cholesterol biosynthesis. We utilized this cellular model to monitor the function of the human serotonin1A receptor under SLOS-like condition. Our results show that ligand binding activity, G-protein coupling and downstream signaling of serotonin1A receptors are impaired in SLOS-like condition, although the membrane receptor level does not exhibit any reduction. Importantly, metabolic replenishment of cholesterol using serum partially restored the ligand binding activity of the serotonin1A receptor. These results are potentially useful in developing strategies for the future treatment of the disease since intake of dietary cholesterol is the only feasible treatment for SLOS patients. 相似文献
18.
The human multidrug resistance-associated protein 1 (hMRP1/ABCC1) belongs to the ATP-binding cassette transporter superfamily. Together with P-glycoprotein (ABCB1) and the breast cancer resistance protein (BCRP/ABCG2), hMRP1 confers resistance to a large number of structurally diverse drugs. The current topological model of hMRP1 includes two cytosolic nucleotide-binding domains and 17 putative transmembrane (TM) helices forming three membrane-spanning domains. Mutagenesis and labeling studies have shown TM16 and TM17 to be important for function. We characterized the insertion of the TM16 fragment into dodecylphosphocholine (DPC) or n-dodecyl-β-d-maltoside (DM) micelles as membrane mimics and extended our previous work on TM17 (Vincent et al., 2007, Biochim. Biophys. Acta 1768, 538). We synthesized TM16 and TM17, with the Trp residues, W1198 in TM16 and W1246 in TM17, acting as an intrinsic fluorescent probe, and TM16 and TM17 Trp variants, to probe different positions in the peptide sequence. We assessed the interaction of peptides with membrane mimics by evaluating the increase in fluorescence intensity resulting from such interactions. In all micelle-bound peptides, the tryptophan residue appeared to be located, on average, in the head group micelle region, as shown by its fluorescence spectrum. Each tryptophan residue was partially accessible to both acrylamide and the brominated acyl chains of two DM analogs, as shown by fluorescence quenching. Tryptophan fluorescence lifetimes were found to depend on the position of the tryptophan residue in the various peptides, probably reflecting differences in local structures. Far UV CD spectra showed that TM16 contained significant β-strand structures. Together with the high Trp correlation times, the presence of these structures suggests that TM16 self-association may occur at the interface. In conclusion, this experimental study suggests an interfacial location for both TM16 and TM17 in membrane mimics. In terms of overall hMRP1 structure, the experimentally demonstrated amphipathic properties of these TM are consistent with a role in the lining of an at least partly hydrophilic transport pore, as suggested by the currently accepted structural model, the final structure being modified by interaction with other TM helices. 相似文献
19.
20.
Identification and characterisation of a novel splice variant of the human CB1 receptor 总被引:4,自引:0,他引:4
Ryberg E Vu HK Larsson N Groblewski T Hjorth S Elebring T Sjögren S Greasley PJ 《FEBS letters》2005,579(1):259-264
Cannabinoid ligands are implicated in many physiological processes and to date two receptors have been identified. However, a growing body of evidence exists that suggests the presence of additional receptors. Whilst cloning the previously described hCB1a, we have identified a novel variant that we call hCB1b. Characterising these two splice variants demonstrates that they have a unique pharmacological profile and that their RNA's are expressed at low levels in a variety of tissues. 相似文献