首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jean-Pierre Métraux 《Planta》1982,155(6):459-466
Changes in the uronide, neutral-polysacharide, and cellulose composition of the cell wall ofNitella axillaris Braun were followed throughout development of the internodes and correlated with changes in growth rate. As the cells increased in length from 4 to 80 mm during development, the relative growth rate decreased. Cell wall thickness, as measured by wall density, increased in direct proportion to diameter, indicating that cell-wall stress did not change during elogation. Cell-wall analyses were adapted to allow determination of the composition of the wall of single cells. The total amounts of uronides, neutral sugars and cellulose all increased during development. However, as the growth rate decreased, the relative proportions of uronides and neutral sugars, expressed as percent of the dry weight of the wall, decreased, while the proportion of cellulose increased. The neutral sugars liberated upon hydrolysis ofNitella walls are qualitatively similar to those found in hydrolysates of higher plant cell walls: glucose, xylose, mannose, galactose, arabinose fucose and rhamnose. Only the percentage of galactose was found to increase in walls of mature cells, while the percentage of all other sugars decreased. The rate of apposition (g of wall material deposited per unit wall surface area per hour) of neutral polysaccharides decreased rapidly with decreasing growth rate during the early stages of development. The rate of apposition of uronides decreased more steadily throughout development, while that of cellulose, after an early decline, remained constant until dropping off at the end of the elongation period. These correlations between decreasing growth rate and decreasing rate of apposition of neutral sugars and uronides indicate that synthesis of these cell-wall components could be involved in the regulation of the rate of cell elongation inNitella.  相似文献   

2.
Changes in the chemical composition of isolated cell walls and fractions were encountered during the differentiation of vegetative and aggregated mycelia of Agaricus bisporus.Differentiation was accompanied by quantitative variations of the wall polysaccharidic components. Neutral carbohydrates were composed of glucose, galactose, mannose and xylose and glucosamine as the only amino sugar. Differences in wall chemistry were correlated to the secondary and tertiary mycelial forms.  相似文献   

3.
Effects of nutrient conditions on biochemical components (sugars and amino acids) of phytoplankton were examined in Lake Nakanuma in Japan. Phosphate, ammonium and silicate were added to water samples collected at 0 m, which were incubated for 15 days in situ. Chlorophyll a in phosphate-added samples increased much more than that in other samples. Total amino acids and total neutral sugars in phosphate-added samples also increased more than those in other samples. The increase of total amino acids and chlorophyll began faster than that of total neutral sugars during the first 5 days of incubation. Total neutral sugars in the phosphate-added samples increased rapidly after 8 days. The composition of amino acids did not change so much. However, the composition of neutral sugars changed according to the different nutrient addition. Phosphate-added samples changed greatly during the incubation. These changes were explained at least partly by changes in nutrient conditions. Addition of limiting nutrients decreased glucose content, whereas depletion of nutrients increased the content. This study indicates that measurements of the biochemical components contribute to the analysis of effects of nutrients on phytoplankton in natural waters.  相似文献   

4.
Neither muramic acid and glucosamine nor d-glutamic acid or other amino acids typical of peptidoglycan were found in cell walls of two strains of Methanosarcina barkeri. The main components are galactosamine, neutral sugars and uronic acids. Therefore, the structural component of the cell wall most likely consists of an acid heteropolysaccharide, resembling that of Halococcus morrhuae. It is, however, not sulfated.  相似文献   

5.
Cell walls of the fungi Saprolegnia diclina Humphrey and Tremella mesenterica Fries were analyzed quantitatively. Particular attention was paid to the hydrolysis and analysis of neutral sugars, amino sugars and amino acids. These components, together with total lipids, total uronic acids and the ashed residue, accounted for more than 90% by weight of the original dry cell wall preparation. There were substantial losses of amino acids during hydrolysis; however, analytical recovery approached 100% when total protein was calculated from the total nitrogen analysis. The analytical procedures were reproducible (±3% for amino acids and amino sugars, and ±5–10% for other components) when applied to individual cell wall preparations. However, even under carefully standardized conditions, different cell wall preparations from the same species showed variable composition.Glucose was the predominant neutral sugar in the cell wall polymers of both species. The amino acid compositions were remarkable in that neither species contained detectable levels of cyst(e)ine. Hydroxyproline was detected in both species. The report from Tremella mesenterica is the first for this imino acid from the cell wall of a Basidiomycete.  相似文献   

6.
Eckhard Loos  Doris Meindl 《Planta》1982,156(3):270-273
Isolated cell walls of mature Chlorella fusca consisted of about 80% carbohydrate, 7% protein, and 13% unidentified material. Mannose and glucose were present in a ratio of about 2.7:1 and accounted for most of the carbohydrate. Minor components were glucuronic acid, rhamnose, and traces of other sugars; galactose was absent. After treatment with 2 M trifluoroacetic acid or with 80% acetic acid/HNO3 (10/1, v/v), a residue with a mannose/glucose ratio of 0.3:1 was obtained, probably representing a structural polysaccharide. An X-ray diffraction diagram of the walls showed one diffuse reflection at 0.44 nm and no reflections characteristic of cellulose. Walls from young cells contained about 51% carbohydrate, 12% protein, and 37% unidentified material. Mannose and glucose were also the main sugars; their absolute amounts per wall increased 6–7 fold during cell growth. Walls isolated with omission of a dodecylsulphate/mercaptoethanol/urea extraction step had a higher protein content and, with young walls, a significantly higher glucose and fucose content. These data and other published cell wall analyses show a wide variability in cell wall composition of the members of the genus Chlorella.Abbreviations GLC gas liquid chromatography - TFA trifluoroacetic acid  相似文献   

7.
Ion-exchange properties of polymeric matrices were compared for cell wall preparations isolated from roots and shoots of two cultivars of Cicer arietinum L. (cvs. Bivanij and ILC 482) with different sensitivities to salinity. Irrespective of growth conditions, the cell walls contained four types of ionogenic groups: amino groups, carboxyl groups of uronic and hydroxycinnamic acids, and phenolic hydroxyl groups. Regardless of the salt concentration in the medium, the cells walls of different chickpea cultivars and from different organs of the same plant were similar in qualitative composition of ionogenic groups, although quantities of ionogenic groups per unit dry wt of cell walls varied depending on external and internal factors. Irrespective of the external medium salinity, the cation-exchange capacity of cell walls, expressed per unit dry wt, decreased in a sequence: stem > root ∼ bottom leaves > upper leaves. The volume of chickpea cell walls was found to vary depending on ionic composition and pH of the incubation medium. The results were analyzed in the context of cell wall involvement in responses of C. arietinum to elevated salinity.  相似文献   

8.
The carbohydrate composition of the cell walls of Paecilomyces persicinus P-10 M1 was monitored daily for 6 days to detect any changes during growth and cephalosporin C production. Walls were isolated after mechanical breakage, sonication, and exposure to detergent. Major quantitative changes in cell wall carbohydrate composition accompanied a decrease in both cell weight and antibiotic production. Glucosamine content remained relatively constant in the 24- to 96-h cell walls and increased markedly in the 120- and 144-h preparations. The non-nitrogenous carbohydrate cell wall component, however, decreased significantly in the 48- and 120-h cell walls. Gas-liquid chromatographic analysis of the non-nitrogenous carbohydrate cell well fraction revealed the presence of glucose, the major component, mannose, galactose, and minute quantities of arabinose. Except for glucose, which was found to decrease moderately in the 120- and 144-h cell walls, the neutral sugars did not vary significantly with time.  相似文献   

9.
The ascomycete Botrytis cinerea is a destructive and ubiquitous plant pathogen and represents a model organism for the study of necrotrophic fungal pathogens. Higher fungi possess a complex and dynamic multilayer cell wall involved in crucial aspects of fungal development, growth and pathogenicity. Plant resistance to microbial pathogens is determined often by the capacity of the plant to recognize molecular patterns associated with the surface of an interacting microbe. Here we report the chemical characterization of cell walls from B. cinerea during axenic growth. Neutral sugars and proteins constituted most of the mass of the B. cinerea cell walls, although chitin and uronic acids were detected. Glucose was the most abundant neutral sugar, but arabinose, galactose, xylose and mannose also were present. Changes in cell wall composition during culture were observed. As the culture developed, protein levels declined, while chitin and neutral sugars increased. Growth of B. cinerea was associated with a remarkable decline in the fraction of its cell wall material that was soluble in hot alkali. These results suggest that the cell wall of B. cinerea undergoes significant modifications during growth, possibly becoming more extensively covalently cross-linked, as a result of aging of mycelia or in response to decreasing nutrient supply or as a consequence of increasing culture density.  相似文献   

10.
The influence of growth temperature, media composition and cell age on the chemical composition of Bacillus stearothermophilus strain AN 002 has been determined. The total cellular protein decreased and the free amino acid content increased with growth temperature, in both exponential and stationary growth phase. The protein and free amino acid contents of cells were higher in the stationary phase than in the exponential phase, irrespective of growth temperature and media composition. The RNA content was only reduced in cells grown at 55° C. No significant variations were observed in the DNA and carbohydrate contents with respect to growth temperature and cell age. The total lipid and fatty acid compositions on the other hand varied as a function of growth temperature, cell age and media composition. Differences in the relative concentrations of even, odd and branched chain fatty acids were noticed. Novariation was observed in the antiiso and unsaturated fatty acids with respect to growth temperature. The unique variations in the fatty acid composition and total lipids at the growth temperature of 50° C and their variations in the stationary growth phase seem to be characteristic for B. stearothermophilus AN 002.  相似文献   

11.
The composition of walls isolated from pollen grains of the seagrass Amphibolis antarctica was determined. Glucose, galactose, and rhamnose were the major neutral monosaccharides in the wall polysaccharides, and fucose, arabinose, xylose, and mannose were present in minor proportions. No apiose, a monosaccharide present in the wall polysaccharides of the vegetative parts of the seagrass Heterozostera tasmanica, was found. Large amounts of uronic acid (mainly as galacturonic acid) were found in the walls. The monosaccharides were probably present in cellulose and pectic polysaccharides, the latter comprising neutral pectic galactans, and rhamnogalacturonans containing high proportions of rhamnose. The walls contained a small amount of protein; glycine and lysine were the amino acids present in the highest proportions. Histochemical examination of isolated walls confirmed the presence of polyanionic components (pectic polysaccharides), -glucans (cellulose), and protein. The composition of the walls is discussed in relation to analyses of the walls of pollen grains and vegetative organs of other plants.  相似文献   

12.
Glucose-limited and glucose-starved cultures of Trichoderma aureoviride were analyzed for the size and composition of the mycelial free amino acid pool. In glucoselimited mycelia the pool size increased as a function of the specific growth rate above a value of ca. 0.08 h-1 and this was due principally to increasing concentrations of alanine and glutamic acid. During glucose starvation, the net pool size decreased only by ca 20% although a transient elevation of free amino acids was observed, the latter being attributed to the turnover of mycelial proteins. The amino acid pool compositions were categorized according to their ionic nature and, although no particular group varied significantly in its percentage contribution to the total pool size of growing mycelia, the observed variations during starvation were mostly attributable to the basic and acidic amino acids. Comparisons are made of the results with those obtained for other species of filamentous fungi and some possible explanations for the observed variations are discussed.  相似文献   

13.
Cell walls were prepared from freeze-dried samples of 7 strains of Methanobacterium by mechanical disintegration of the cells followed by incubation with trypsin. Electron microscopy revealed the presence of sacculi exhibiting the shape of the original cells, on which no surface structure could be detected. Ultrathin sections of the isolated sacculi showed a homogenously electron dense layer of about 10–15 nm in width. The ash content varied between 8 and 18% of dry weight. The sacculi of all the strains contained Lys: Ala: Glu: GlcNAc or GalNAc in a molar ratio of about 1:1.2:2:1. In one strain (M. ruminantium M 1) alanine is replaced by threonine, however. Neutral sugars and-in some strains-additional amounts of the amino sugars were present in variable amounts, and could be removed by formamide extraction or HF treatment without destroying the sacculi. No muramic acid or d-amino acids typical of peptidoglycan were found. Therefore, the sacculi of the methanobacteria consist of a different polymer containing a set of three l-amino acids and one N-acetylated amino sugar. From cells of Methanospirillum hungatii no sacculi, but tube-like sheaths could be isolated, which tend to fracture perpendicularly to the long axis of the sheath along the fibrills seen on the surface. The sheaths consist of protein containing 18 amino acids and small amounts of neutral sugars. They are resistent to the proteinases tested and are not disintegrated by boiling in 2% sodium dodecylsulfate for 30 min.The three Gram-negative strains Black Sea isolate JR-1, Cariaco isolate JR-1 and Methanobacterium mobile do not contain a rigid sacculus, but merely a SDS-sensitive surface layer composed of regularly arranged protein subunits. This evidence indicates that, within the methanogens, different cell wall polymers characteristic of particular groups of organisms may have evolved during evolution, and supports the hypothesis that the evolution of the methanogens was separated from that of the peptidoglycan-containing procaryotic organisms at a very early stage.Non Standard Abbreviations SDS sodium dodecylsulfate - EDTA ethylenediaminetetra acetic acid - DNP dinitrophenyl Dedicated to Prof. Dr. Adolf Butenandt on the occasion of his 75th birthday  相似文献   

14.
Summary Cell walls of the marine Oomycete, Atkinsiella dubia were prepared and an analysis of the wall constituents was made. The walls contained approximately 80% polysaccharides and 14% proteins along with small quantities of lipid and ash. The carbohydrate fraction was composed primarily of glucan along with 1.8% glucosamine and a trace of galactosamine. An analysis of the amino acid composition of the protein fraction showed the presence of 18 identified amino acids including a surprisingly high (20% of total amino acids) hydroxyproline content. The polysaccharide fractions of the wall were mostly glucans with solubility properties similar to those reported for other Oomycetes. As anticipated, the glucans of mechanically isolated walls were virtually identical to those prepared from chemically isolated walls. The minor glucan component, cellulose, was found to occur in the form of poorly crystalline cellulose I As expected, electron microscopy of wall specimens showed microfibrillar and amorphous regions. It was stressed that Atkinsiella walls, like those of other Oomycetes, contain large quantities of -13 and -16 linked glucan along with a smaller amount of cellulose.  相似文献   

15.
Purified cell walls were prepared from both the conchocelis and thallus phases of Porphyra tenera (Kjellm.). The nitrogen content of cell walls from the conchocelis was significantly greater than that for the thallus cell walls, being 3.35 ± 0.26% and 2.39± 0.03%, respectively. Amino acid analysis revealed important differences. The conchocelis cell wall hydrolyzates were richer in aspartic acid, glutamic acid, methionine, and basic amino acids. The thallus cell wall hydrolyzates, however, contained much more glycine and alanine than did those of the conchocelis. Hydroxyproline was not detected in cell walls of either phase. The neutral sugar content of cell wall hydrolyzates from the thallus was more than double that from the conchocelis being 83.6% and 34.5%, respectively. The former contained predominantly mannose which accounted for 72.2% of the neutral sugars while the latter was principally galactose (49.9%) and glucose (36.4%). Methylation analysis confirmed the presence of cellulose microfibrils in the conchocelis in contrast to xylan microfibrils in the thallus. The results establish that the conchocelis and thallus phases of P. tenera differ markedly in the structure and composition of the cell walls.  相似文献   

16.
Carbohydrates and proteins in surface water during a bloom ofMictrocystis, which is the dominant summer phytoplankton in Lake Suwa, were analyzed in order to evaluate the function ofMicrocystis in organic matter metabolism. Glucose was the predominant sugar constituent of the cellular carbohydrate fraction and decreased in quantity from inside towards the outside of the cell through the slime layer. Other constituent sugars, on the other hand, were present in larger proportions in the lake water. Although the sugar composition of the cells did not change in July and August, during the first period of theMicrocystis bloom, it changed appreciably in September when the water temperature decreased below 20°C accompanied by the decrease in solar radiation and a marked change in nutrient concentration. It appears that the sugar composition of the cells may change in response to some environmental stresses. In addition, a temporal change in the sugar composition was found, particularly in the fraction containing the slime extracted by shaking. Among the constituent amino acids of the cells, the percentage of arginine, aspartic acid and leucine decreased from inside toward the outside of the cell, while glutamic acid, threonine, serine and glycine showed an opposite trend. In contrast to the carbohydrates, the percentage composition of each amino acid varied little throughout the period of the bloom.  相似文献   

17.
The preparation and chemical poperties of the cell walls of Leptospira biflexa Urawa and Treponema pallidum Reiter are described. Both cell walls are composed mainly of polysaccharides and peptidoglycans. The data of chemical analysis indicate that the cell wall of L. biflexa Urawa contains rhamnose, arabinose, xylose, mannose, galactose, glucose and unidentified sugars as neutral sugars, and alanine, glutamic acid, α,ε-diaminopimelic acid, glucosamine and muramic acid as major amino acids and amino sugars. As major chemical constituents of the cell wall of T. pallidum Reiter, rhamnose, arabinose, xylose, mannose, galactose, glucose, alanine, glutamic acid, ornithine, glycine, glucosamine and muramic acid have been detected. The chemical properties of protein and polysaccharide fractions prepared from the cells of T. pallidum Reiter were also partially examined.  相似文献   

18.
Summary Studies conducted to examine the exudation pattern of amino acids and sugars in four crop plants,viz sorghum, sunnhemp, ragi, and tomato indicated that in all, 17 known amino acids and 4 sugars were exuded and that the number and nature of the exuded amino acids and sugars differed with the plant species and with the age of plant. Glutamic and aspartic acids were found to be present in the exudates of all the plant species at all stages of plant growth examined. The quantities of amino acids and sugars differed with plant species and the maximum quantity of the chemicals was exuded during the early stages of plant growth. Glutamic acid among amino acids, and glucose among sugars, were always present in higher concentrations than the others, in the exudates in all the four crop plants.Foliar application of nitrogen in the form of NaNO3 and phosphorus as Na2HPO4, was found to alter the exudation pattern of amino acids and sugars and such influence differed in different plant species. There was a general increase in the total concentration of amino acids and a decrease in sugar content in the exudates after treatment of the foliage with N, while a decrease in the amino acid content and increase in total sugars with P-treatment was observed.  相似文献   

19.
The differences in chemical composition of leaves and stems of Ranunculus fluitans Lam. were investigated. Typical distribution of organic and inorganic compounds were generally found not to be influenced by factors as day-time, eutrophication, or age of the weed bed. Starch, sugars, amino acids, and organic acids were at a higher level in the stem, but inorganic cations and anions were accumulated in the leaf. The distribution pattern and the relative contents of individual sugars, acids, and inorganic ions are discussed in detail.  相似文献   

20.
The changes in osmotic potential and cell wall composition of hypocotyl cell walls from different hypocotyl regions were investigated during growth of etiolated seedlings of Pinus pinaster Aiton. The osmotic potential in the subapical 5 mm part was minimum when hypocotyl growth rate was low, and increased when the fast growth phase began. The main non-cellulosic sugars of the cell wall from pine hypocotyl were arabinose, galactose, xylose, glucose and uronic acids, although their relative proportions were different from those found for angiosperm cell walls. Non-cellulosic glucose was the sugar showing the most important changes during hypocotyl growth as well as along the hypocotyl, suggesting that a glucose-rich polysaccharide is involved in a very active turnover during growth. A partial degradation of a xyloglucan during growth is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号